enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Impulse response - Wikipedia

    en.wikipedia.org/wiki/Impulse_response

    The impulse response of a linear transformation is the image of Dirac's delta function under the transformation, analogous to the fundamental solution of a partial differential operator. It is usually easier to analyze systems using transfer functions as opposed to impulse responses. The transfer function is the Laplace transform of the impulse ...

  3. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    The impulse response can be computed to any desired degree of accuracy by choosing a suitable approximation for δ, and once it is known, it characterizes the system completely. See LTI system theory § Impulse response and convolution. The inverse Fourier transform of the tempered distribution f(ξ) = 1 is the delta function.

  4. Duhamel's integral - Wikipedia

    en.wikipedia.org/wiki/Duhamel's_integral

    If a system initially rests at its equilibrium position, from where it is acted upon by a unit-impulse at the instance t=0, i.e., p(t) in the equation above is a Dirac delta function δ(t), () = | = =, then by solving the differential equation one can get a fundamental solution (known as a unit-impulse response function)

  5. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    [1] [note 1] The time constant is the main characteristic unit of a first-order LTI system. It gives speed of the response. In the time domain, the usual choice to explore the time response is through the step response to a step input, or the impulse response to a Dirac delta function input. [2]

  6. RL circuit - Wikipedia

    en.wikipedia.org/wiki/RL_circuit

    The impulse response for each voltage is the inverse Laplace transform of the corresponding transfer function. It represents the response of the circuit to an input voltage consisting of an impulse or Dirac delta function. The impulse response for the inductor voltage is

  7. Finite impulse response - Wikipedia

    en.wikipedia.org/wiki/Finite_impulse_response

    The result is a finite impulse response filter whose frequency response is modified from that of the IIR filter. Multiplying the infinite impulse by the window function in the time domain results in the frequency response of the IIR being convolved with the Fourier transform (or DTFT) of the window function. If the window's main lobe is narrow ...

  8. Infinite impulse response - Wikipedia

    en.wikipedia.org/wiki/Infinite_impulse_response

    Impulse invariance is a technique for designing discrete-time infinite-impulse-response (IIR) filters from continuous-time filters in which the impulse response of the continuous-time system is sampled to produce the impulse response of the discrete-time system.

  9. RC circuit - Wikipedia

    en.wikipedia.org/wiki/RC_circuit

    The impulse response of a series RC circuit. The impulse response for each voltage is the inverse Laplace transform of the corresponding transfer function. It represents the response of the circuit to an input voltage consisting of an impulse or Dirac delta function. The impulse response for the capacitor voltage is