Search results
Results from the WOW.Com Content Network
A right triangle with the hypotenuse c. In a right triangle, the hypotenuse is the side that is opposite the right angle, while the other two sides are called the catheti or legs. [7] The length of the hypotenuse can be calculated using the square root function implied by the Pythagorean theorem.
Construct a second triangle with sides of length a and b containing a right angle. By the Pythagorean theorem, it follows that the hypotenuse of this triangle has length c = √ a 2 + b 2, the same as the hypotenuse of the first triangle. Since both triangles' sides are the same lengths a, b and c, the triangles are congruent and
Each of these triangles has a hypotenuse of length , so the length of ¯ is (+), i.e. simply (+). The quadrilateral's other diagonal is the diameter of length 1, so the product of the diagonals' lengths is also sin ( α + β ) {\displaystyle \sin(\alpha +\beta )} .
Set square, shaped as 30° - 60° - 90°° triangle The side lengths of a 30°–60°–90° triangle 30° - 60° - 90° right triangle of hypotenuse length 1. This is a triangle whose three angles are in the ratio 1 : 2 : 3 and respectively measure 30° ( π / 6 ), 60° ( π / 3 ), and 90° ( π / 2 ).
In this way, this trigonometric identity involving the tangent and the secant follows from the Pythagorean theorem. The angle opposite the leg of length 1 (this angle can be labeled φ = π/2 − θ) has cotangent equal to the length of the other leg, and cosecant equal to the length of the hypotenuse. In that way, this trigonometric identity ...
A triangle whose side lengths are a Pythagorean triple is a right triangle and called a Pythagorean triangle. A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). [1] For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not.
Trigonometric functions specify the relationships between side lengths and interior angles of a right triangle. For example, the sine of angle θ is defined as being the length of the opposite side divided by the length of the hypotenuse.
The spiral is started with an isosceles right triangle, with each leg having unit length.Another right triangle (which is the only automedian right triangle) is formed, with one leg being the hypotenuse of the prior right triangle (with length the square root of 2) and the other leg having length of 1; the length of the hypotenuse of this second right triangle is the square root of 3.