Search results
Results from the WOW.Com Content Network
In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation ≤ {\displaystyle \leq } on some set X {\displaystyle X} , which satisfies the following for all a , b {\displaystyle a,b} and c {\displaystyle c} in X {\displaystyle X} :
A relation that is functional and total. For example, the red and green relations in the diagram are functions, but the blue and black ones are not. An injection [d] A function that is injective. For example, the green relation in the diagram is an injection, but the red, blue and black ones are not. A surjection [d] A function that is surjective.
Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that".
A linear extension is an extension that is also a linear (that is, total) order. As a classic example, the lexicographic order of totally ordered sets is a linear extension of their product order. Every partial order can be extended to a total order (order-extension principle). [16]
In mathematics, especially order theory, the covering relation of a partially ordered set is the binary relation which holds between comparable elements that are immediate neighbours. The covering relation is commonly used to graphically express the partial order by means of the Hasse diagram .
In mathematics, a binary relation R ⊆ X×Y between two sets X and Y is total (or left total) if the source set X equals the domain {x : there is a y with xRy}. Conversely, R is called right total if Y equals the range {y : there is an x with xRy}. When f: X → Y is a function, the domain of f is all of X, hence f is a total relation.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Order theory is a branch of mathematics that studies various kinds of objects (often binary relations) that capture the intuitive notion of ordering, providing a framework for saying when one thing is "less than" or "precedes" another. An alphabetical list of many notions of order theory can be found in the order theory glossary.