Search results
Results from the WOW.Com Content Network
ABC transporter transmembrane domain is the main transmembrane structural unit of ATP-binding cassette transporter proteins, consisting of six alpha helixes that traverse the plasma membrane. Many members of the ABC transporter family ( Pfam PF00005 ) have two such regions.
Arching or compressive membrane action (CMA) in reinforced concrete slabs occurs as a result of the great difference between the tensile and compressive strength of concrete. Cracking of the concrete causes a migration of the neutral axis which is accompanied by in-plane expansion of the slab at its boundaries.
Additional requirements and requirements for structures in consequence class 1 can be found in the material specific Eurocode parts, EN 1992 for concrete structures, EN 1993 for steel structures and so on. In EN 1991-1-7 buildings are categorised in consequences classes, considering the building type, occupancy and size. [1]
A transmembrane domain (TMD, TM domain) is a membrane-spanning protein domain.TMDs may consist of one or several alpha-helices or a transmembrane beta barrel.Because the interior of the lipid bilayer is hydrophobic, the amino acid residues in TMDs are often hydrophobic, although proteins such as membrane pumps and ion channels can contain polar residues.
The ancient Romans used a type of lime mortar that has been found to be self-healing. [8] The stratlingite crystals form along the interfacial zones of Roman concrete, binding the aggregate and mortar together and this process continued even after 2000 years and it was discovered by the geologist Marie Jackson and her colleagues in 2014.
Logo of Eurocode 2 An example of a concrete structure. In the Eurocode series of European standards (EN) related to construction, Eurocode 2: Design of concrete structures (abbreviated EN 1992 or, informally, EC 2) specifies technical rules for the design of concrete, reinforced concrete and prestressed concrete structures, using the limit state design philosophy.
Repair principles which do not improve the strength or performance of concrete beyond its original (undamaged) condition include replacement and restoration of concrete after spalling and delamination; strengthening to restore structural load-bearing capacity; and increasing resistance to physical or mechanical attack.
Concrete has a very low coefficient of thermal expansion, and as it matures concrete shrinks. All concrete structures will crack to some extent, due to shrinkage and tension. Concrete which is subjected to long-duration forces is prone to creep. The density of concrete varies, but is around 2,400 kilograms per cubic metre (150 lb/cu ft). [1]