enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Change of base - Wikipedia

    en.wikipedia.org/wiki/Change_of_base

    In mathematics, change of base can mean any of several things: Changing numeral bases, such as converting from base 2 to base 10 . This is known as base conversion. The logarithmic change-of-base formula, one of the logarithmic identities used frequently in algebra and calculus.

  3. Orders of magnitude (data) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(data)

    1.442695 bits (log 2 e) – approximate size of a nat (a unit of information based on natural logarithms) 1.5849625 bits (log 2 3) – approximate size of a trit (a base-3 digit) 2 1: 2 bits – a crumb (a.k.a. dibit) enough to uniquely identify one base pair of DNA: 3 bits – a triad(e), (a.k.a. tribit) the size of an octal digit 2 2: nibble

  4. Binary logarithm - Wikipedia

    en.wikipedia.org/wiki/Binary_logarithm

    An easy way to calculate log 2 n on calculators that do not have a log 2 function is to use the natural logarithm (ln) or the common logarithm (log or log 10) functions, which are found on most scientific calculators. To change the logarithm base to 2 from e, 10, or any other base b, one can use the formulae: [50] [53]

  5. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    The graph of the logarithm base 2 crosses the x-axis at x = 1 and passes through the points (2, 1), (4, 2), and (8, 3), depicting, e.g., log 2 (8) = 3 and 2 3 = 8. The graph gets arbitrarily close to the y-axis, but does not meet it. Addition, multiplication, and exponentiation are three of the most fundamental arithmetic operations.

  6. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...

  7. Orders of magnitude (numbers) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(numbers)

    Mathematics: √ 2 + 1 ≈ 2.414 213 562 373 095 049, the silver ratio; the ratio of the smaller of the two quantities to the larger quantity is the same as the ratio of the larger quantity to the sum of the smaller quantity and twice the larger quantity. Mathematics: e ≈ 2.718 281 828 459 045 087, the base of the natural logarithm.

  8. Dynamic range - Wikipedia

    en.wikipedia.org/wiki/Dynamic_range

    It is measured either as a ratio or as a base-10 or base-2 (doublings, bits or stops) logarithmic value of the ratio between the largest and smallest signal values. [ 3 ] Electronically reproduced audio and video is often processed to fit the original material with a wide dynamic range into a narrower recorded dynamic range for easier storage ...

  9. Common logarithm - Wikipedia

    en.wikipedia.org/wiki/Common_logarithm

    The logarithm keys (log for base-10 and ln for base-e) on a typical scientific calculator. The advent of hand-held calculators largely eliminated the use of common logarithms as an aid to computation. The numerical value for logarithm to the base 10 can be calculated with the following identities: [5]