Search results
Results from the WOW.Com Content Network
Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.
While previous OpenAI models had been made immediately available to the public, OpenAI initially refused to make a public release of GPT-2's source code when announcing it in February, citing the risk of malicious use; [8] limited access to the model (i.e. an interface that allowed input and provided output, not the source code itself) was ...
BERT is meant as a general pretrained model for various applications in natural language processing. That is, after pre-training, BERT can be fine-tuned with fewer resources on smaller datasets to optimize its performance on specific tasks such as natural language inference and text classification , and sequence-to-sequence-based language ...
Generative Pre-trained Transformer 3 (GPT-3) is a large language model released by OpenAI in 2020.. Like its predecessor, GPT-2, it is a decoder-only [2] transformer model of deep neural network, which supersedes recurrence and convolution-based architectures with a technique known as "attention". [3]
[1] [2] Like the original Transformer model, [3] T5 models are encoder-decoder Transformers, where the encoder processes the input text, and the decoder generates the output text. T5 models are usually pretrained on a massive dataset of text and code, after which they can perform the text-based tasks that are similar to their pretrained tasks.
The use of a transformer architecture, as opposed to previous techniques involving attention-augmented RNNs, provided GPT models with a more structured memory than could be achieved through recurrent mechanisms; this resulted in "robust transfer performance across diverse tasks". [3]
A foundation model, also known as large X model (LxM), is a machine learning or deep learning model that is trained on vast datasets so it can be applied across a wide range of use cases. [1] Generative AI applications like Large Language Models are often examples of foundation models.
In deep learning, fine-tuning is an approach to transfer learning in which the parameters of a pre-trained neural network model are trained on new data. [1] Fine-tuning can be done on the entire neural network, or on only a subset of its layers, in which case the layers that are not being fine-tuned are "frozen" (i.e., not changed during backpropagation). [2]