enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Slip (vehicle dynamics) - Wikipedia

    en.wikipedia.org/wiki/Slip_(vehicle_dynamics)

    In (automotive) vehicle dynamics, slip is the relative motion between a tire and the road surface it is moving on. This slip can be generated either by the tire's rotational speed being greater or less than the free-rolling speed (usually described as percent slip), or by the tire's plane of rotation being at an angle to its direction of motion (referred to as slip angle).

  3. Slip ratio - Wikipedia

    en.wikipedia.org/wiki/Slip_ratio

    Slip ratio is a means of calculating and expressing the slipping behavior of the wheel of an automobile.It is of fundamental importance in the field of vehicle dynamics, as it allows to understand the relationship between the deformation of the tire and the longitudinal forces (i.e. the forces responsible for forward acceleration and braking) acting upon it.

  4. Slip angle - Wikipedia

    en.wikipedia.org/wiki/Slip_angle

    The ratios between the slip angles of the front and rear axles (a function of the slip angles of the front and rear tires respectively) will determine the vehicle's behavior in a given turn. If the ratio of front to rear slip angles is greater than 1:1, the vehicle will tend to understeer, while a ratio of less than 1:1 will produce oversteer. [2]

  5. Tire load sensitivity - Wikipedia

    en.wikipedia.org/wiki/Tire_load_sensitivity

    Production car tires typically develop this maximum lateral force, or cornering force, at a slip angle of 6-10 degrees, although this angle increases as the vertical load on the tire increases. [ 1 ] Formula 1 car tires may reach a peak side force at 3 degrees [ 2 ]

  6. Self aligning torque - Wikipedia

    en.wikipedia.org/wiki/Self_aligning_torque

    Even if the slip angle and camber angle are zero, and the road is flat, this torque will still be generated due to asymmetries in the tire's construction and the asymmetrical shape and pressure distribution of the contact patch. Typically for a production tire this torque reaches a maximum at 2–4 degrees of slip (this figure depends on many ...

  7. Hans B. Pacejka - Wikipedia

    en.wikipedia.org/wiki/Hans_B._Pacejka

    These coefficients are then used to generate equations showing how much force is generated for a given vertical load on the tire, camber angle and slip angle. [ 5 ] The Pacejka tire models are widely used in professional vehicle dynamics simulations, and racing car games, as they are reasonably accurate, easy to program, and solve quickly.

  8. Cornering force - Wikipedia

    en.wikipedia.org/wiki/Cornering_force

    'Deflected' tread path, sideslip velocity and slip angle Graph of cornering force vs slip angle. Cornering force or side force is the lateral (i.e., parallel to wheel axis) force produced by a vehicle tire during cornering. [1] Cornering force is generated by tire slip and is proportional to slip angle at low slip angles.

  9. Tire model - Wikipedia

    en.wikipedia.org/wiki/Tire_model

    Example of the slip angle curve obtained from a Pacejka Magic Formula empirical tire model. In vehicle dynamics, a tire model is a type of multibody simulation used to simulate the behavior of tires. In current vehicle simulator models, the tire model is the weakest and most difficult part to simulate. [1] [2]