Search results
Results from the WOW.Com Content Network
For the virus to reproduce and thereby establish infection, it must enter cells of the host organism and use those cells' materials. To enter the cells, proteins on the surface of the virus interact with proteins of the cell. Attachment, or adsorption, occurs between the viral particle and the host cell membrane.
Viruses may undergo two types of life cycles: the lytic cycle and the lysogenic cycle. In the lytic cycle, the virus introduces its genome into a host cell and initiates replication by hijacking the host's cellular machinery to make new copies of the virus. [12] In the lysogenic life cycle, the viral genome is incorporated into the host genome.
Each type of protein is a specialist that usually only performs one function, so if a cell needs to do something new, it must make a new protein. Viruses force the cell to make new proteins that the cell does not need, but are needed for the virus to reproduce. Protein synthesis consists of two major steps: transcription and translation. [34]
Viral evolution is a subfield of evolutionary biology and virology that is specifically concerned with the evolution of viruses. [1] [2] Viruses have short generation times, and many—in particular RNA viruses—have relatively high mutation rates (on the order of one point mutation or more per genome per round of replication).
Viral transformation is the change in growth, phenotype, or indefinite reproduction of cells caused by the introduction of inheritable material. Through this process, a virus causes harmful transformations of an in vivo cell or cell culture. The term can also be understood as DNA transfection using a viral vector. Figure 1: Hepatitis-B virions
Some relatively avirulent viruses in their natural host show increased virulence upon transfer to a new host species. When an emerging virus first invades a new host species, the hosts have little or no immunity against the virus and often experience high mortality. Over time, a decrease in virulence in the predominant strain can sometimes be ...
Viruses infect all life forms; therefore the bacterial, plant, and animal cells and material in the gut also carry viruses. [6] When viruses cause harm by infecting the cells in the body, a symptomatic disease may develop. Contrary to common belief, harmful viruses may be in the minority, compared to benign viruses in the human body.
Viral phylodynamics is the study of how epidemiological, immunological, and evolutionary processes act and potentially interact to shape viral phylogenies. [1] Since the term was coined in 2004, research on viral phylodynamics has focused on transmission dynamics in an effort to shed light on how these dynamics impact viral genetic variation.