Search results
Results from the WOW.Com Content Network
In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.
Each row of points is a sample from the same normal distribution. The colored lines are 50% confidence intervals for the mean, μ.At the center of each interval is the sample mean, marked with a diamond.
Another memory trick to calculate the allowed downtime duration for an "-nines" availability percentage is to use the formula seconds per day. For example, 90% ("one nine") yields the exponent 4 − 1 = 3 {\displaystyle 4-1=3} , and therefore the allowed downtime is 8.64 × 10 3 {\displaystyle 8.64\times 10^{3}} seconds per day.
For example, to calculate the 95% prediction interval for a normal distribution with a mean (μ) of 5 and a standard deviation (σ) of 1, then z is approximately 2. Therefore, the lower limit of the prediction interval is approximately 5 ‒ (2⋅1) = 3, and the upper limit is approximately 5 + (2⋅1) = 7, thus giving a prediction interval of ...
The percent value can also be found by multiplying first instead of later, so in this example, the 50 would be multiplied by 100 to give 5,000, and this result would be divided by 1,250 to give 4%. To calculate a percentage of a percentage, convert both percentages to fractions of 100, or to decimals, and multiply them. For example, 50% of 40% is:
Our bodies have 3 billion genetic building blocks, or base pairs, that make us who we are. And of those 3 billion base pairs, only a tiny amount are unique to us, making us about 99.9% genetically ...
From January 2008 to December 2012, if you bought shares in companies when Molly J. Coye, M.D. joined the board, and sold them when she left, you would have a -19.9 percent return on your investment, compared to a -2.8 percent return from the S&P 500.
In statistics, a k-th percentile, also known as percentile score or centile, is a score below which a given percentage k of scores in its frequency distribution falls ("exclusive" definition) or a score at or below which a given percentage falls ("inclusive" definition); i.e. a score in the k-th percentile would be above approximately k% of all scores in its set.