enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Relationships among probability distributions - Wikipedia

    en.wikipedia.org/wiki/Relationships_among...

    If X is a binomial (n, p) random variable and if n is large and np is small then X approximately has a Poisson(np) distribution. If X is a negative binomial random variable with r large, P near 1, and r(1 − P) = λ, then X approximately has a Poisson distribution with mean λ. Consequences of the CLT:

  3. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The Poisson distribution, which describes a very large number of individually unlikely events that happen in a certain time interval. Related to this distribution are a number of other distributions: the displaced Poisson, the hyper-Poisson, the general Poisson binomial and the Poisson type distributions.

  4. Poisson binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_binomial_distribution

    There is no simple formula for the entropy of a Poisson binomial distribution, but the entropy is bounded above by the entropy of a binomial distribution with the same number parameter and the same mean. Therefore, the entropy is also bounded above by the entropy of a Poisson distribution with the same mean. [7]

  5. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    The binomial distribution converges towards the Poisson distribution as the number of trials goes to infinity while the product np converges to a finite limit. Therefore, the Poisson distribution with parameter λ = np can be used as an approximation to B(n, p) of the binomial distribution if n is sufficiently large and p is

  6. Poisson regression - Wikipedia

    en.wikipedia.org/wiki/Poisson_regression

    A Poisson regression model is sometimes known as a log-linear model, especially when used to model contingency tables. Negative binomial regression is a popular generalization of Poisson regression because it loosens the highly restrictive assumption that the variance is equal to the mean made by the Poisson model. The traditional negative ...

  7. Poisson limit theorem - Wikipedia

    en.wikipedia.org/wiki/Poisson_limit_theorem

    In probability theory, the law of rare events or Poisson limit theorem states that the Poisson distribution may be used as an approximation to the binomial distribution, under certain conditions. [1] The theorem was named after Siméon Denis Poisson (1781–1840). A generalization of this theorem is Le Cam's theorem

  8. Binomial regression - Wikipedia

    en.wikipedia.org/wiki/Binomial_regression

    Binomial regression models are essentially the same as binary choice models, one type of discrete choice model: the primary difference is in the theoretical motivation (see comparison). In machine learning, binomial regression is considered a special case of probabilistic classification, and thus a generalization of binary classification.

  9. Pivotal quantity - Wikipedia

    en.wikipedia.org/wiki/Pivotal_quantity

    The function (,) is the Student's t-statistic for a new value , to be drawn from the same population as the already observed set of values . Using x = μ {\displaystyle x=\mu } the function g ( μ , X ) {\displaystyle g(\mu ,X)} becomes a pivotal quantity, which is also distributed by the Student's t-distribution with ν = n − 1 ...