Search results
Results from the WOW.Com Content Network
The standard hydrogen electrode (SHE), with [ H +] = 1 M works thus at a pH = 0. At pH = 7, when [ H +] = 10 −7 M, the reduction potential of H + differs from zero because it depends on pH. Solving the Nernst equation for the half-reaction of reduction of two protons into hydrogen gas gives: 2 H + + 2 e − ⇌ H 2
The data below tabulates standard electrode potentials (E°), in volts relative to the standard hydrogen electrode (SHE), at: Temperature 298.15 K (25.00 °C; 77.00 °F); Effective concentration (activity) 1 mol/L for each aqueous or amalgamated (mercury-alloyed) species; Unit activity for each solvent and pure solid or liquid species; and
In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...
During the early development of electrochemistry, researchers used the normal hydrogen electrode as their standard for zero potential. This was convenient because it could actually be constructed by "[immersing] a platinum electrode into a solution of 1 N strong acid and [bubbling] hydrogen gas through the solution at about 1 atm pressure".
In electrochemistry, electrode potential is the voltage of a galvanic cell built from a standard reference electrode and another electrode to be characterized. [1] By convention, the reference electrode is the standard hydrogen electrode (SHE). It is defined to have a potential of zero volts. It may also be defined as the potential difference ...
It is (in principle) easy to measure whether or not two regions (for example, two glasses of water) have the same electrochemical potential for a certain chemical species (for example, a solute molecule): Allow the species to freely move back and forth between the two regions (for example, connect them with a semi-permeable membrane that lets ...
The counter electrode, also known as the auxiliary or second electrode, can be any material that conducts current easily, will not react with the bulk solution, and has a surface area much larger than the working electrode. Common choices are platinum and graphite. Reactions occurring at the counter electrode surface are unimportant as long as ...
The electrochemical series, which consists of standard electrode potentials and is closely related to the reactivity series, was generated by measuring the difference in potential between the metal half-cell in a circuit with a standard hydrogen half-cell, connected by a salt bridge. The standard hydrogen half-cell: 2H + (aq) + 2e − → H 2 (g)