Search results
Results from the WOW.Com Content Network
There is a corresponding greatest-lower-bound property; an ordered set possesses the greatest-lower-bound property if and only if it also possesses the least-upper-bound property; the least-upper-bound of the set of lower bounds of a set is the greatest-lower-bound, and the greatest-lower-bound of the set of upper bounds of a set is the least ...
Thus, the infimum or meet of a collection of subsets is the greatest lower bound while the supremum or join is the least upper bound. In this context, the inner limit, lim inf X n, is the largest meeting of tails of the sequence, and the outer limit, lim sup X n, is the smallest joining of tails of the sequence. The following makes this precise.
The Lebesgue outer measure emerges as the greatest lower bound (infimum) of the lengths from among all possible such sets. Intuitively, it is the total length of those interval sets which fit most tightly and do not overlap. That characterizes the Lebesgue outer measure.
In many specialized areas of order theory, one restricts to classes of partially ordered sets that are complete with respect to certain limit constructions. For example, in lattice theory, one is interested in orders where all finite non-empty sets have both a least upper bound and a greatest lower bound.
Likewise, a greatest element of a partially ordered set (poset) is an upper bound of the set which is contained within the set, whereas a maximal element m of a poset A is an element of A such that if m ≤ b (for any b in A), then m = b. Any least element or greatest element of a poset is unique, but a poset can have several minimal or maximal ...
Other common names for the least element are bottom and zero (0). The dual notion, the empty lower bound, is the greatest element, top, or unit (1). Posets that have a bottom are sometimes called pointed, while posets with a top are called unital or topped. An order that has both a least and a greatest element is bounded.
In calculus and mathematical analysis the limits of integration (or bounds of integration) of the integral () of a Riemann integrable function f {\displaystyle f} defined on a closed and bounded interval are the real numbers a {\displaystyle a} and b {\displaystyle b} , in which a {\displaystyle a} is called the lower limit and b {\displaystyle ...
In a directed set, every pair of elements (particularly pairs of incomparable elements) has a common upper bound within the set. If a directed set has a maximal element, it is also its greatest element, [proof 7] and hence its only maximal element. For a directed set without maximal or greatest elements, see examples 1 and 2 above.