enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nonstandard calculus - Wikipedia

    en.wikipedia.org/wiki/Nonstandard_calculus

    This is the main reason why it is hard to understand the rigorous definitions of limit, convergence, continuity and differentiability in analysis as they have many quantifiers. In fact, it is the alternation of the ∀ {\displaystyle \forall } and ∃ {\displaystyle \exists } that causes the complexity.

  3. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    Differentiability is therefore a stronger regularity condition (condition describing the "smoothness" of a function) than continuity, and it is possible for a function to be continuous on the entire real line but not differentiable anywhere (see Weierstrass's nowhere differentiable continuous function). It is possible to discuss the existence ...

  4. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    Continuity and differentiability This function does not have a derivative at the marked point, as the function is not continuous there (specifically, it has a jump discontinuity ). The absolute value function is continuous but fails to be differentiable at x = 0 since the tangent slopes do not approach the same value from the left as they do ...

  5. Function of several real variables - Wikipedia

    en.wikipedia.org/wiki/Function_of_several_real...

    The implicit function theorem of more than two real variables deals with the continuity and differentiability of the function, as follows. [4] Let ϕ(x 1, x 2, …, x n) be a continuous function with continuous first order partial derivatives, and let ϕ evaluated at a point (a, b) = (a 1, a 2, …, a n, b) be zero:

  6. Multivariable calculus - Wikipedia

    en.wikipedia.org/wiki/Multivariable_calculus

    A study of limits and continuity in multivariable calculus yields many counterintuitive results not demonstrated by single-variable functions. A limit along a path may be defined by considering a parametrised path s ( t ) : R → R n {\displaystyle s(t):\mathbb {R} \to \mathbb {R} ^{n}} in n-dimensional Euclidean space.

  7. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    Continuity of real functions is usually defined in terms of limits. A function f with variable x is continuous at the real number c, if the limit of (), as x tends to c, is equal to (). There are several different definitions of the (global) continuity of a function, which depend on the nature of its domain.

  8. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    In the theory of differential equations, Lipschitz continuity is the central condition of the Picard–Lindelöf theorem which guarantees the existence and uniqueness of the solution to an initial value problem. A special type of Lipschitz continuity, called contraction, is used in the Banach fixed-point theorem. [2]

  9. Rademacher's theorem - Wikipedia

    en.wikipedia.org/wiki/Rademacher's_theorem

    In mathematical analysis, Rademacher's theorem, named after Hans Rademacher, states the following: If U is an open subset of R n and f: U → R m is Lipschitz continuous, then f is differentiable almost everywhere in U; that is, the points in U at which f is not differentiable form a set of Lebesgue measure zero.