Search results
Results from the WOW.Com Content Network
However, two tangent lines can be drawn to a circle from a point P outside of the circle. The geometrical figure of a circle and both tangent lines likewise has a reflection symmetry about the radial axis joining P to the center point O of the circle. Thus the lengths of the segments from P to the two tangent points are
The tangent line is said to be "going in the same direction" as the curve, and is thus the best straight-line approximation to the curve at that point. The tangent line to a point on a differentiable curve can also be thought of as a tangent line approximation, the graph of the affine function that best approximates the original function at the ...
Due to the Pythagorean theorem the number () has the simple geometric meanings shown in the diagram: For a point outside the circle () is the squared tangential distance | | of point to the circle . Points with equal power, isolines of Π ( P ) {\displaystyle \Pi (P)} , are circles concentric to circle c {\displaystyle c} .
A circle is tangent to a point if it passes through the point, and tangent to a line if they intersect at a single point P or if the line is perpendicular to a radius drawn from the circle's center to P. Circles tangent to two given points must lie on the perpendicular bisector. Circles tangent to two given lines must lie on the angle bisector.
A tangent can be considered a limiting case of a secant whose ends are coincident. If a tangent from an external point A meets the circle at F and a secant from the external point A meets the circle at C and D respectively, then AF 2 = AC × AD (tangent–secant theorem).
Tangent lines to circles; Circle packing theorem, the result that every planar graph may be realized by a system of tangent circles; Hexafoil, the shape formed by a ring of six tangent circles; Feuerbach's theorem on the tangency of the nine-point circle of a triangle with its incircle and excircles; Descartes' theorem; Ford circle; Bankoff circle
A circle with 1st-order contact (tangent) A circle with 2nd-order contact (osculating) A circle with 3rd-order contact at a vertex of a curve. For each point S(t) on a smooth plane curve S, there is exactly one osculating circle, whose radius is the reciprocal of κ(t), the curvature of S at t.
In mathematics, a Ford circle is a circle in the Euclidean plane, in a family of circles that are all tangent to the -axis at rational points. For each rational number p / q {\displaystyle p/q} , expressed in lowest terms, there is a Ford circle whose center is at the point ( p / q , 1 / ( 2 q 2 ) ) {\displaystyle (p/q,1/(2q^{2}))} and whose ...