enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ramanujan–Petersson conjecture - Wikipedia

    en.wikipedia.org/wiki/Ramanujan–Petersson...

    Furthermore, we can concretely calculate the dimension of the space of holomorphic modular forms, using the Riemann–Roch theorem (see the dimensions of modular forms). Deligne (1971) used the Eichler–Shimura isomorphism to reduce the Ramanujan conjecture to the Weil conjectures that he later proved.

  3. Modular forms modulo p - Wikipedia

    en.wikipedia.org/wiki/Modular_forms_modulo_p

    As modular forms also satisfy a certain kind of functional equation with respect to the group action of the modular group, this Fourier series may be expressed in terms of =. So if f {\displaystyle f} is a modular form, then there are coefficients c ( n ) {\displaystyle c(n)} such that f ( z ) = ∑ n ∈ N c ( n ) q n {\displaystyle f(z)=\sum ...

  4. Ramanujan tau function - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_tau_function

    Ramanujan (1916) observed, but did not prove, the following three properties of τ(n): τ(mn) = τ(m)τ(n) if gcd(m,n) = 1 (meaning that τ(n) is a multiplicative function); τ(p r + 1) = τ(p)τ(p r) − p 11 τ(p r − 1) for p prime and r > 0.

  5. Ramanujan's congruences - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_congruences

    The web of modularity: arithmetic of the coefficients of modular forms and q-series. CBMS Regional Conference Series in Mathematics. Vol. 102. Providence, RI: American Mathematical Society. ISBN 978-0-8218-3368-1. Zbl 1119.11026. Ramanujan, S. (1919). "Some properties of p(n), the number of partitions of n".

  6. Ramanujan–Sato series - Wikipedia

    en.wikipedia.org/wiki/Ramanujan–Sato_series

    In mathematics, a Ramanujan–Sato series [1] [2] generalizes Ramanujan’s pi formulas such as, = = ()!! + to the form = = + by using other well-defined sequences of integers obeying a certain recurrence relation, sequences which may be expressed in terms of binomial coefficients (), and ,, employing modular forms of higher levels.

  7. Partition function (number theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function_(number...

    Srinivasa Ramanujan is credited with discovering that the partition function has nontrivial patterns in modular arithmetic. For instance the number of partitions is divisible by five whenever the decimal representation of n {\displaystyle n} ends in the digit 4 or 9, as expressed by the congruence [ 7 ] p ( 5 k + 4 ) ≡ 0 ( mod 5 ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Mock modular form - Wikipedia

    en.wikipedia.org/wiki/Mock_modular_form

    In mathematics, a mock modular form is the holomorphic part of a harmonic weak Maass form, and a mock theta function is essentially a mock modular form of weight ⁠ 1 / 2 ⁠. The first examples of mock theta functions were described by Srinivasa Ramanujan in his last 1920 letter to G. H. Hardy and in his lost notebook .