Search results
Results from the WOW.Com Content Network
Binary systems containing neutron stars often emit X-rays, which are emitted by hot gas as it falls towards the surface of the neutron star. The source of the gas is the companion star, the outer layers of which can be stripped off by the gravitational force of the neutron star if the two stars are sufficiently close.
If the explosion does not kick the second star away, the binary system survives. The neutron star can now be visible as a radio pulsar, and it slowly loses energy and spins down. Later, the second star can swell up, allowing the neutron star to suck up its matter. The matter falling onto the neutron star spins it up and reduces its magnetic field.
Neutron stars can be classified as pulsars if they are magnetized, if they rotate, and if they emit beams of electromagnetic radiation out of their magnetic poles. [4] They may include soft gamma repeaters (SGR) and radio-quiet neutron stars, as well as pulsars such as radio pulsars, recycled pulsars, low mass X-ray pulsars, and accretion ...
This is a list of sources of light, the visible part of the electromagnetic spectrum.Light sources produce photons from another energy source, such as heat, chemical reactions, or conversion of mass or a different frequency of electromagnetic energy, and include light bulbs and stars like the Sun. Reflectors (such as the moon, cat's eyes, and mirrors) do not actually produce the light that ...
The main trait that sets magnetars apart from other neutron stars is a magnetic field 1,000 to 10,000 times stronger than an ordinary neutron star's magnetism and a trillion times that of the sun.
Jets may also be observed from spinning neutron stars. An example is pulsar IGR J11014-6103, which has the largest jet so far observed in the Milky Way, and whose velocity is estimated at 80% the speed of light (0.8c). X-ray observations have been obtained, but there is no detected radio signature nor accretion disk.
With Supernova 1987A, the star's size and the neutrino burst's duration had suggested the remnant would be a neutron star, but this had not been confirmed through direct evidence.
The magnetar itself is not visible at this wavelength but has been seen in X-ray light. In a supernova, a star collapses to a neutron star, and its magnetic field increases dramatically in strength through conservation of magnetic flux. Halving a linear dimension increases the magnetic field strength fourfold.