Search results
Results from the WOW.Com Content Network
Christopher David Godsil is a professor and the former Chair at the Department of Combinatorics and Optimization in the faculty of mathematics at the University of Waterloo.He wrote the popular textbook on algebraic graph theory, entitled Algebraic Graph Theory, with Gordon Royle, [1] His earlier textbook on algebraic combinatorics discussed distance-regular graphs and association schemes.
Algebraic graph theory is a branch of mathematics in which algebraic methods are applied to problems about graphs. This is in contrast to geometric, combinatoric, or algorithmic approaches. There are three main branches of algebraic graph theory, involving the use of linear algebra, the use of group theory, and the study of graph invariants.
Algebraic graph theory is a branch of graph theory Subcategories. This category has the following 2 subcategories, out of 2 total. ... Code of Conduct; Developers ...
The chromatic symmetric function is a symmetric function invariant of graphs studied in algebraic graph theory, a branch of mathematics. It is the weight generating function for proper graph colorings, and was originally introduced by Richard Stanley as a generalization of the chromatic polynomial of a graph. [1]
Its authors have divided Elementary Number Theory, Group Theory and Ramanujan Graphs into four chapters. The first of these provides background in graph theory, including material on the girth of graphs (the length of the shortest cycle), on graph coloring, and on the use of the probabilistic method to prove the existence of graphs for which both the girth and the number of colors needed are ...
In the following figure, the graph C is a covering graph of the graph H. The covering map f from C to H is indicated with the colours. For example, both blue vertices of C are mapped to the blue vertex of H. The map f is a surjection: each vertex of H has a preimage in C. Furthermore, f maps bijectively each neighbourhood of a vertex v in C ...
The smallest Paley graph, with q = 5, is the 5-cycle (above). Self-complementary arc-transitive graphs are strongly regular. A strongly regular graph is called primitive if both the graph and its complement are connected. All the above graphs are primitive, as otherwise μ = 0 or λ = k.
The subject became an object of algebraic interest with the publication of (Bose & Mesner 1959) and the introduction of the Bose–Mesner algebra. The most important contribution to the theory was the thesis of P. Delsarte (Delsarte 1973) who recognized and fully used the connections with coding theory and design theory. [10]