Search results
Results from the WOW.Com Content Network
A logarithmic spiral, equiangular spiral, or growth spiral is a self-similar spiral curve that often appears in nature. The first to describe a logarithmic spiral was Albrecht Dürer (1525) who called it an "eternal line" ("ewige Linie").
The Archimedean spiral (also known as Archimedes' spiral, the arithmetic spiral) is a spiral named after the 3rd-century BC Greek mathematician Archimedes. The term Archimedean spiral is sometimes used to refer to the more general class of spirals of this type (see below), in contrast to Archimedes' spiral (the specific arithmetic spiral of ...
The spiral is a frequent symbol for spiritual purification, both within Christianity and beyond (one thinks of the spiral as the neo-Platonist symbol for prayer and contemplation, circling around a subject and ascending at the same time, and as a Buddhist symbol for the gradual process on the Path to Enlightenment).
A double-end Euler spiral. The curve continues to converge to the points marked, as t tends to positive or negative infinity. An Euler spiral is a curve whose curvature changes linearly with its curve length (the curvature of a circular curve is equal to the reciprocal of the radius). This curve is also referred to as a clothoid or Cornu spiral.
The representation of the Fermat spiral in polar coordinates (r, φ) is given by the equation = for φ ≥ 0. The parameter is a scaling factor affecting the size of the spiral but not its shape. The two choices of sign give the two branches of the spiral, which meet smoothly at the origin.
To this is added a 1x1x2 cuboid to form a 1x2x2 cuboid. This pattern continues, forming in succession a 2x2x3 cuboid, a 2x3x4 cuboid etc. [1] [2] [3] Joining the diagonals of the exposed end of each new added cuboid creates a spiral (seen as the black line in the figure). The points on this spiral all lie in the same plane. [1]
The Ulam spiral or prime spiral is a graphical depiction of the set of prime numbers, devised by mathematician Stanisław Ulam in 1963 and popularized in Martin Gardner's Mathematical Games column in Scientific American a short time later. [1] It is constructed by writing the positive integers in a square spiral and specially marking the prime ...
A Fibonacci spiral approximates the golden spiral using quarter-circle arcs inscribed in squares derived from the Fibonacci sequence. A golden spiral with initial radius 1 is the locus of points of polar coordinates ( r , θ ) {\displaystyle (r,\theta )} satisfying r = φ 2 θ / π , {\displaystyle r=\varphi ^{2\theta /\pi },} where φ ...