enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: ⁡ = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.

  3. Scalar field - Wikipedia

    en.wikipedia.org/wiki/Scalar_field

    Mathematically, a scalar field on a region U is a real or complex-valued function or distribution on U. [1] [2] The region U may be a set in some Euclidean space, Minkowski space, or more generally a subset of a manifold, and it is typical in mathematics to impose further conditions on the field, such that it be continuous or often continuously differentiable to some order.

  4. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The scalar projection is defined as [2] = ‖ ‖ ⁡ = ^ where the operator ⋅ denotes a dot product, ‖a‖ is the length of a, and θ is the angle between a and b. The scalar projection is equal in absolute value to the length of the vector projection, with a minus sign if the direction of the projection is opposite to the direction of b ...

  5. Vector-valued function - Wikipedia

    en.wikipedia.org/wiki/Vector-valued_function

    A graph of the vector-valued function r(z) = 2 cos z, 4 sin z, z indicating a range of solutions and the vector when evaluated near z = 19.5. A common example of a vector-valued function is one that depends on a single real parameter t, often representing time, producing a vector v(t) as the result.

  6. Scalar (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Scalar_(mathematics)

    A scalar is an element of a field which is used to define a vector space.In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication (defined in the vector space), in which a vector can be multiplied by a scalar in the defined way to produce another vector.

  7. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    The values of the function are represented in greyscale and increase in value from white (low) to dark (high). In vector calculus , the gradient of a scalar-valued differentiable function f {\displaystyle f} of several variables is the vector field (or vector-valued function ) ∇ f {\displaystyle \nabla f} whose value at a point p ...

  8. Ising model - Wikipedia

    en.wikipedia.org/wiki/Ising_model

    Now the field has constant quadratic spatial fluctuations at all temperatures. The scale dimension of the H 2 term is 2, while the scale dimension of the H 4 term is 4 − d. For d < 4, the H 4 term has positive scale dimension. In dimensions higher than 4 it has negative scale dimensions. This is an essential difference.

  9. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.