Search results
Results from the WOW.Com Content Network
The self-ionization of water (also autoionization of water, autoprotolysis of water, autodissociation of water, or simply dissociation of water) is an ionization reaction in pure water or in an aqueous solution, in which a water molecule, H 2 O, deprotonates (loses the nucleus of one of its hydrogen atoms) to become a hydroxide ion, OH −.
In chemistry, molecular autoionization (or self-ionization) is a chemical reaction between molecules of the same substance to produce ions. If a pure liquid partially dissociates into ions, it is said to be self-ionizing. [1]: 163 In most cases the oxidation number on all atoms in such a reaction remains unchanged. Such autoionization can be ...
Household ammonia ranges in concentration by weight from 5% to 10% ammonia. [9] Because aqueous ammonia is a gas dissolved in water, as the water evaporates from a surface, the gas evaporates also, leaving the surface streak-free. Its most common uses are to clean glass [10], porcelain, and stainless steel. It is good at removing grease and is ...
The water molecule is amphoteric in aqueous solution. It can either gain a proton to form a hydronium ion H 3 O +, or else lose a proton to form a hydroxide ion OH −. [7] Another possibility is the molecular autoionization reaction between two water molecules, in which one water molecule acts as an acid and another as a base. H 2 O + H 2 O ...
Protons tunnel across a series of hydrogen bonds between hydronium ions and water molecules.. The Grotthuss mechanism (also known as proton jumping) is a model for the process by which an 'excess' proton or proton defect diffuses through the hydrogen bond network of water molecules or other hydrogen-bonded liquids through the formation and concomitant cleavage of covalent bonds involving ...
The ammonium ion is mildly acidic, reacting with Brønsted bases to return to the uncharged ammonia molecule: [NH 4] + + B − → HB + NH 3. Thus, the treatment of concentrated solutions of ammonium salts with a strong base gives ammonia. When ammonia is dissolved in water, a tiny amount of it converts to ammonium ions: H 2 O + NH 3 ⇌ OH − ...
An example of a weak base is ammonia. It does not contain hydroxide ions, but it reacts with water to produce ammonium ions and hydroxide ions. [4] The position of equilibrium varies from base to base when a weak base reacts with water. The further to the left it is, the weaker the base. [5]
The hydroxides OH − that approach the anode mostly combine with the positive hydronium ions (H 3 O +) to form water. The positive hydronium ions that approach the cathode mostly combine with negative hydroxide ions to form water. Relatively few hydroniums/hydroxide ions reach the cathode/anode. This can cause overpotential at both electrodes.