Search results
Results from the WOW.Com Content Network
A diagram with multiple synchronous machine curves; open-circuit saturation curve is the leftmost one. The open-circuit saturation curve (also open-circuit characteristic, OCC) of a synchronous generator is a plot of the output open circuit voltage as a function of the excitation current or field. The curve is typically plotted alongside the ...
The synchronous impedance curve (also short-circuit characteristic, SCC) of a synchronous generator is a plot of the output short circuit current as a function of the excitation current or field. The curve is typically plotted alongside the open-circuit saturation curve .
Therefore, the direct synchronous reactance can be determined as a ratio of the voltage in open condition to short-circuit current : =. These current and voltage values can be obtained from the open-circuit saturation curve and the synchronous impedance curve .
In a synchronous generator, [1] the short circuit ratio is the ratio of field current required to produce rated armature voltage at the open circuit to the field current required to produce the rated armature current at short circuit. [1] [2] This ratio can also be expressed as an inverse of the saturated [3] direct-axis synchronous reactance ...
The curve is obtained by rotating the generator at the rated RPM with the output terminals connected to the unity load, varying the excitation field and recording the output voltage. Potier Triangle. The ZPFC could be used together with the open-circuit saturation curve in Potier Triangle method.
Circuit diagram for open-circuit test. The open-circuit test, or no-load test, is one of the methods used in electrical engineering to determine the no-load impedance in the excitation branch of a transformer. The no load is represented by the open circuit, which is represented on the right side of the figure as the "hole" or incomplete part of ...
Capability curve of an electrical generator describes the limits of the active and reactive power that the generator can provide. The curve represents a boundary of all operating points in the MW/MVAr plane; it is typically drawn with the real power on the horizontal axis, and, for the synchronous generator , resembles a letter D in shape, thus ...
Each curve corresponds to a different Hill coefficient, labeled to the curve's right. The vertical axis displays the proportion of the total number of receptors that have been bound by a ligand. The horizontal axis is the concentration of the ligand. As the Hill coefficient is increased, the saturation curve becomes steeper.