enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Sampling_(statistics)

    A simple example would be to select every 10th name from the telephone directory (an 'every 10th' sample, also referred to as 'sampling with a skip of 10'). As long as the starting point is randomized, systematic sampling is a type of probability sampling.

  3. Systematic sampling - Wikipedia

    en.wikipedia.org/wiki/Systematic_sampling

    This is random sampling with a system. From the sampling frame, a starting point is chosen at random, and choices thereafter are at regular intervals. For example, suppose you want to sample 8 houses from a street of 120 houses. 120/8=15, so every 15th house is chosen after a random starting point between 1 and 15.

  4. Simple random sample - Wikipedia

    en.wikipedia.org/wiki/Simple_random_sample

    An example would be if the students in the school had numbers attached to their names ranging from 0001 to 1000, and we chose a random starting point, e.g. 0533, and then picked every 10th name thereafter to give us our sample of 100 (starting over with 0003 after reaching 0993).

  5. Glossary of probability and statistics - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_probability...

    A particular point or value at which the range of a probability distribution is divided into continuous intervals with equal probabilities, or at which the observations in a sample are divided in the same way. The number of groups into which the range is divided is always one greater than the number of quantiles dividing them.

  6. Reservoir sampling - Wikipedia

    en.wikipedia.org/wiki/Reservoir_sampling

    Suppose we see a sequence of items, one at a time. We want to keep 10 items in memory, and we want them to be selected at random from the sequence. If we know the total number of items n and can access the items arbitrarily, then the solution is easy: select 10 distinct indices i between 1 and n with equal probability, and keep the i-th

  7. Survey sampling - Wikipedia

    en.wikipedia.org/wiki/Survey_sampling

    Quota Samples: The sample is designed to include a designated number of people with certain specified characteristics. For example, 100 coffee drinkers. This type of sampling is common in non-probability market research surveys. Convenience Samples: The sample is composed of whatever persons can be most easily accessed to fill out the survey.

  8. Slice sampling - Wikipedia

    en.wikipedia.org/wiki/Slice_sampling

    Slice sampling is a type of Markov chain Monte Carlo algorithm for pseudo-random number sampling, i.e. for drawing random samples from a statistical distribution.The method is based on the observation that to sample a random variable one can sample uniformly from the region under the graph of its density function.

  9. Cluster sampling - Wikipedia

    en.wikipedia.org/wiki/Cluster_sampling

    One method is to sample clusters and then survey all elements in that cluster. Another method is a two-stage method of sampling a fixed proportion of units (be it 5% or 50%, or another number, depending on cost considerations) from within each of the selected clusters. Relying on the sample drawn from these options will yield an unbiased estimator.