enow.com Web Search

  1. Ads

    related to: jacobson ring algebra worksheet printable free

Search results

  1. Results from the WOW.Com Content Network
  2. Jacobson ring - Wikipedia

    en.wikipedia.org/wiki/Jacobson_ring

    Any finitely generated algebra over a Jacobson ring is a Jacobson ring. In particular, any finitely generated algebra over a field or the integers, such as the coordinate ring of any affine algebraic set, is a Jacobson ring. A local ring has exactly one maximal ideal, so it is a Jacobson ring exactly when that maximal ideal is the only prime ideal.

  3. Jacobson's conjecture - Wikipedia

    en.wikipedia.org/wiki/Jacobson's_conjecture

    In abstract algebra, Jacobson's conjecture is an open problem in ring theory concerning the intersection of powers of the Jacobson radical of a Noetherian ring.. It has only been proven for special types of Noetherian rings, so far.

  4. Semisimple module - Wikipedia

    en.wikipedia.org/wiki/Semisimple_module

    Every ring that is semisimple as a module over itself has zero Jacobson radical, but not every ring with zero Jacobson radical is semisimple as a module over itself. A J-semisimple ring is semisimple if and only if it is an artinian ring, so semisimple rings are often called artinian semisimple rings to avoid confusion. For example, the ring of ...

  5. Semisimple algebra - Wikipedia

    en.wikipedia.org/wiki/Semisimple_algebra

    In ring theory, a branch of mathematics, a semisimple algebra is an associative artinian algebra over a field which has trivial Jacobson radical (only the zero element of the algebra is in the Jacobson radical). If the algebra is finite-dimensional this is equivalent to saying that it can be expressed as a Cartesian product of simple subalgebras.

  6. Zariski's lemma - Wikipedia

    en.wikipedia.org/wiki/Zariski's_lemma

    The following characterization of a Jacobson ring contains Zariski's lemma as a special case. Recall that a ring is a Jacobson ring if every prime ideal is an intersection of maximal ideals. (When A is a field, A is a Jacobson ring and the theorem below is precisely Zariski's lemma.)

  7. Radical of a module - Wikipedia

    en.wikipedia.org/wiki/Radical_of_a_module

    In fact, if M is finitely generated over a ring, then rad(M) itself is a superfluous submodule. This is because any proper submodule of M is contained in a maximal submodule of M when M is finitely generated. A ring for which rad(M) = {0} for every right R-module M is called a right V-ring. For any module M, rad(M/rad(M)) is zero.

  1. Ads

    related to: jacobson ring algebra worksheet printable free