Search results
Results from the WOW.Com Content Network
Example: Let a and b be nonzero real numbers. Then the subgroup of the real numbers R generated by a is commensurable with the subgroup generated by b if and only if the real numbers a and b are commensurable, in the sense that a/b is rational. Thus the group-theoretic notion of commensurability generalizes the concept for real numbers.
A rational algebraic expression (or rational expression) is an algebraic expression that can be written as a quotient of polynomials, such as x 2 + 4x + 4. An irrational algebraic expression is one that is not rational, such as √ x + 4.
Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge. Constructible numbers form a subfield of the field of algebraic numbers, and include the quadratic surds.
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...
For a given combination of values for the free variables, an expression may be evaluated, although for some combinations of values of the free variables, the value of the expression may be undefined. Thus an expression represents an operation over constants and free variables and whose output is the resulting value of the expression. [22]
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
This category represents all rational numbers, that is, those real numbers which can be represented in the form: ...where and are integers and is ...
Solving for , = = = = = Thus, the power rule applies for rational exponents of the form /, where is a nonzero natural number. This can be generalized to rational exponents of the form p / q {\displaystyle p/q} by applying the power rule for integer exponents using the chain rule, as shown in the next step.