Search results
Results from the WOW.Com Content Network
A variant of the spigot approach uses an algorithm which can be used to compute a single arbitrary digit of the transcendental without computing the preceding digits: an example is the Bailey–Borwein–Plouffe formula, a digit extraction algorithm for π which produces base 16 digits. The inevitable truncation of the underlying infinite ...
This category presents articles pertaining to the calculation of Pi to arbitrary precision. Pages in category "Pi algorithms" The following 17 pages are in this category, out of 17 total.
Rosetta Code is a wiki-based programming chrestomathy website with implementations of common algorithms and solutions to various programming problems in many different programming languages. [ 1 ] [ 2 ] It is named for the Rosetta Stone , which has the same text inscribed on it in three languages, and thus allowed Egyptian hieroglyphs to be ...
The Gauss–Legendre algorithm is an algorithm to compute the digits of π. It is notable for being rapidly convergent, with only 25 iterations producing 45 million correct digits of π . However, it has some drawbacks (for example, it is computer memory -intensive) and therefore all record-breaking calculations for many years have used other ...
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
The π-calculus belongs to the family of process calculi, mathematical formalisms for describing and analyzing properties of concurrent computation.In fact, the π-calculus, like the λ-calculus, is so minimal that it does not contain primitives such as numbers, booleans, data structures, variables, functions, or even the usual control flow statements (such as if-then-else, while).
The programming control structures on which autoparallelization places the most focus are loops, because, in general, most of the execution time of a program takes place inside some form of loop. There are two main approaches to parallelization of loops: pipelined multi-threading and cyclic multi-threading. [ 3 ]
In computer science, occam-π (or occam-pi) is the name of a variant of the programming language occam developed by the Kent Retargetable occam Compiler team at the University of Kent. [1] The name reflects the introduction of elements of π-calculus (pi-calculus) into occam, especially concepts involving mobile agents (processes) and data.