Search results
Results from the WOW.Com Content Network
Sign bit: 1 bit; Exponent: 11 bits; Significand precision: 53 bits (52 explicitly stored) The sign bit determines the sign of the number (including when this number is zero, which is signed). The exponent field is an 11-bit unsigned integer from 0 to 2047, in biased form: an exponent value of 1023 represents the actual zero. Exponents range ...
One supports 32-bit and 64-bit integer, FP16, FP32, FP64, and transcendental math functions, and the other supports only 32-bit and 64-bit integer, FP16 and FP32. Thus the FP16 (or 16-bit integer) FLOPS is twice the FP32 (or 32-bit integer) FLOPS. Since the throughput of FP64 instructions are 2 cycles, the FP64 FLOPS is a quarter of the FP32 FLOPS.
Floating point operations per second (FLOPS, flops or flop/s) is a measure of computer performance in computing, useful in fields of scientific computations that require floating-point calculations. [1] For such cases, it is a more accurate measure than measuring instructions per second. [citation needed]
The Intel 8231 (and revised 8231A) is the Arithmetic Processing Unit (APU). It offered 32-bit "double" precision (a term later and more commonly used to describe 64-bit floating-point numbers, whilst 32-bit is considered "single" precision) floating-point, and 16-bit or 32-bit ("single" or "double" precision) fixed-point calculation of 14 different arithmetic and trigonometric functions to a ...
4-level paging of the 64-bit mode. In the 4-level paging scheme (previously known as IA-32e paging), the 64-bit virtual memory address is divided into five parts. The lowest 12 bits contain the offset within the 4 KiB memory page, and the following 36 bits are evenly divided between the four 9 bit descriptors, each linking to a 64-bit page table entry in a 512-entry page table for each of the ...
PUSHFQ/POPFQ (introduced with the x86-64 architecture) transfer the 64-bit quadword register RFLAGS. In 64-bit mode, PUSHF/POPF and PUSHFQ/POPFQ are available but PUSHFD/POPFD are not. [8]: 4–349, 4–432 The lower 8 bits of the FLAGS register is also open to direct load/store manipulation by SAHF and LAHF (load/store AH into flags).
In 2003, 64-bit CPUs were introduced to the mainstream PC market in the form of x86-64 processors and the PowerPC G5. A 64-bit register can hold any of 2 64 (over 18 quintillion or 1.8×10 19) different values. The range of integer values that can be stored in 64 bits depends on the integer representation used.
The "L" extension (not yet certified) will specify 64-bit and 128-bit decimal floating point. [ 43 ] Quadruple-precision (128-bit) hardware implementation should not be confused with "128-bit FPUs" that implement SIMD instructions, such as Streaming SIMD Extensions or AltiVec , which refers to 128-bit vectors of four 32-bit single-precision or ...