Search results
Results from the WOW.Com Content Network
In artificial neural networks, a convolutional layer is a type of network layer that applies a convolution operation to the input. Convolutional layers are some of the primary building blocks of convolutional neural networks (CNNs), a class of neural network most commonly applied to images, video, audio, and other data that have the property of uniform translational symmetry.
In machine learning, the term tensor informally refers to two different concepts (i) a way of organizing data and (ii) a multilinear (tensor) transformation. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector ...
A convolutional neural network (CNN) is a regularized type of feedforward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]
As an example, a single 5×5 convolution can be factored into 3×3 stacked on top of another 3×3. Both has a receptive field of size 5×5. The 5×5 convolution kernel has 25 parameters, compared to just 18 in the factorized version. Thus, the 5×5 convolution is strictly more powerful than the factorized version.
The Recurrent layer is used for text processing with a memory function. Similar to the Convolutional layer, the output of recurrent layers are usually fed into a fully-connected layer for further processing. See also: RNN model. [6] [7] [8] The Normalization layer adjusts the output data from previous layers to achieve a regular distribution ...
In May 2016, Google announced its Tensor processing unit (TPU), an application-specific integrated circuit (ASIC, a hardware chip) built specifically for machine learning and tailored for TensorFlow. A TPU is a programmable AI accelerator designed to provide high throughput of low-precision arithmetic (e.g., 8-bit ), and oriented toward using ...
ITensor [50] features automatic contraction of matching tensor indices. It is written in C++ and has higher-level features for quantum physics algorithms based on tensor networks. Fastor [51] is a high performance C++ tensor algebra library that supports tensors of any arbitrary dimensions and all their possible contraction and permutation ...
Comparison of the LeNet and AlexNet convolution, pooling, and dense layers (AlexNet image size should be 227×227×3, instead of 224×224×3, so the math will come out right. The original paper said different numbers, but Andrej Karpathy, the former head of computer vision at Tesla, said it should be 227×227×3 (he said Alex didn't describe ...