enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kirchhoff–Helmholtz integral - Wikipedia

    en.wikipedia.org/wiki/KirchhoffHelmholtz_integral

    The Kirchhoff–Helmholtz integral combines the Helmholtz equation with the Kirchhoff integral theorem [1] to produce a method applicable to acoustics, [2] seismology [3] and other disciplines involving wave propagation.

  3. Kirchhoff integral theorem - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff_integral_theorem

    Kirchhoff's integral theorem (sometimes referred to as the Fresnel–Kirchhoff integral theorem) [1] is a surface integral to obtain the value of the solution of the homogeneous scalar wave equation at an arbitrary point P in terms of the values of the solution and the solution's first-order derivative at all points on an arbitrary closed surface (on which the integration is performed) that ...

  4. Boundary element method - Wikipedia

    en.wikipedia.org/wiki/Boundary_element_method

    The boundary element method (BEM) is a numerical computational method of solving linear partial differential equations which have been formulated as integral equations (i.e. in boundary integral form), including fluid mechanics, acoustics, electromagnetics (where the technique is known as method of moments or abbreviated as MoM), [1] fracture mechanics, [2] and contact mechanics.

  5. Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_equation

    The Helmholtz equation has a variety of applications in physics and other sciences, including the wave equation, the diffusion equation, and the Schrödinger equation for a free particle. In optics, the Helmholtz equation is the wave equation for the electric field. [1] The equation is named after Hermann von Helmholtz, who studied it in 1860. [2]

  6. Kirchhoff equations - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff_equations

    In fluid dynamics, the Kirchhoff equations, named after Gustav Kirchhoff, describe the motion of a rigid body in an ideal fluid. = + + +, = + +, = (~ +) = ^, = ^ where and are the angular and linear velocity vectors at the point , respectively; ~ is the moment of inertia tensor, is the body's mass; ^ is a unit normal vector to the surface of the body at the point ; is a pressure at this point ...

  7. Kirchhoff's diffraction formula - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_diffraction...

    Kirchhoff's integral theorem, sometimes referred to as the Fresnel–Kirchhoff integral theorem, [3] uses Green's second identity to derive the solution of the homogeneous scalar wave equation at an arbitrary spatial position P in terms of the solution of the wave equation and its first order derivative at all points on an arbitrary closed surface as the boundary of some volume including P.

  8. Prolate spheroidal wave function - Wikipedia

    en.wikipedia.org/wiki/Prolate_spheroidal_wave...

    Originally, the spheroidal wave functions were introduced by C. Niven, [21] which lead to a Helmholtz equation in spheroidal coordinates. Monographs tying together many aspects of the theory of spheroidal wave functions were written by Strutt, [ 22 ] Stratton et al., [ 23 ] Meixner and Schafke, [ 24 ] and Flammer.

  9. Light field - Wikipedia

    en.wikipedia.org/wiki/Light_field

    The analog of the 4D light field for sound is the sound field or wave field, as in wave field synthesis, and the corresponding parametrization is the Kirchhoff–Helmholtz integral, which states that, in the absence of obstacles, a sound field over time is given by the pressure on a plane. Thus this is two dimensions of information at any point ...