enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reflection coefficient - Wikipedia

    en.wikipedia.org/wiki/Reflection_coefficient

    In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z 0.

  3. Reflections of signals on conducting lines - Wikipedia

    en.wikipedia.org/wiki/Reflections_of_signals_on...

    A time-domain reflectometer; an instrument used to locate the position of faults on lines from the time taken for a reflected wave to return from the discontinuity.. A signal travelling along an electrical transmission line will be partly, or wholly, reflected back in the opposite direction when the travelling signal encounters a discontinuity in the characteristic impedance of the line, or if ...

  4. Standing wave ratio - Wikipedia

    en.wikipedia.org/wiki/Standing_wave_ratio

    Since SWR is a measure of the load impedance relative to the characteristic impedance of the transmission line in use (which together determine the reflection coefficient as described below), a given SWR meter can interpret the impedance it sees in terms of SWR only if it has been designed for the same particular characteristic impedance as the ...

  5. Signal reflection - Wikipedia

    en.wikipedia.org/wiki/Signal_reflection

    In radio frequency (RF) practice this is often measured in a dimensionless ratio known as voltage standing wave ratio (VSWR) with a VSWR bridge. The ratio of energy bounced back depends on the impedance mismatch. Mathematically, it is defined using the reflection coefficient. [2]

  6. Time-domain reflectometer - Wikipedia

    en.wikipedia.org/wiki/Time-domain_reflectometer

    Generally, the reflections will have the same shape as the incident signal, but their sign and magnitude depend on the change in impedance level. If there is a step increase in the impedance, then the reflection will have the same sign as the incident signal; if there is a step decrease in impedance, the reflection will have the opposite sign.

  7. Scattering parameters - Wikipedia

    en.wikipedia.org/wiki/Scattering_parameters

    This is correct for reflection coefficients with a magnitude no greater than unity, which is usually the case. A reflection coefficient with a magnitude greater than unity, such as in a tunnel diode amplifier, will result in a negative value for this expression. VSWR, however, from its definition, is always positive.

  8. SWR meter - Wikipedia

    en.wikipedia.org/wiki/SWR_meter

    A directional SWR meter measures the magnitude of the forward and reflected waves by sensing each one individually, with directional couplers. A calculation then produces the SWR. A simple directional SWR meter. Referring to the above diagram, the transmitter (TX) and antenna (ANT) terminals connect via an internal transmission line.

  9. Hagen–Rubens relation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Rubens_relation

    In optics, the Hagen–Rubens relation (or Hagen–Rubens formula) is a relation between the coefficient of reflection and the conductivity for materials that are good conductors. [1] The relation states that for solids where the contribution of the dielectric constant to the index of refraction is negligible, the reflection coefficient can be ...