Search results
Results from the WOW.Com Content Network
On x86-64 processors in native long mode, the address translation scheme uses PAE but adds a fourth table, the 512-entry page-map level 4 table, and extends the page directory pointer table to 512 entries instead of the original 4 entries it has in protected mode. This means that 48 bits of virtual page number are translated, giving a virtual ...
Compared to the Physical Address Extension (PAE) method, PSE-36 is a simpler alternative to addressing more than 4 GB of memory. It uses the Page Size Extension (PSE) mode and a modified page directory table to map 4 MB pages into a 64 GB physical address space. PSE-36's downside is that, unlike PAE, it doesn't have 4-KB page granularity above ...
10-11 Reserved for CPU 3-4 12 ... enables 32-bit paging mode to use 4 MiB huge pages in addition to 4 KiB pages. If PAE is enabled ... 10 Processor Address Space ID ...
The NX bit (no-execute) is a technology used in CPUs to segregate areas of a virtual address space to store either data or processor instructions. An operating system with support for the NX bit may mark certain areas of an address space as non-executable. The processor will then refuse to execute any code residing in these areas of the address ...
Many 32-bit computers have 32 physical address bits and are thus limited to 4 GiB (2 32 words) of memory. [3] [4] x86 processors prior to the Pentium Pro have 32 or fewer physical address bits; however, most x86 processors since the Pentium Pro, which was first sold in 1995, have the Physical Address Extension (PAE) mechanism, [5]: 445 which allows addressing up to 64 GiB (2 36 words) of memory.
It was mentioned that creating a page table structure that contained mappings for every virtual page in the virtual address space could end up being wasteful. But, we can get around the excessive space concerns by putting the page table in virtual memory, and letting the virtual memory system manage the memory for the page table.
Paging is one way of allowing the size of the addresses used by a process, which is the process's "virtual address space" or "logical address space", to be different from the amount of main memory actually installed on a particular computer, which is the physical address space.
4-level paging of the 64-bit mode. In the 4-level paging scheme (previously known as IA-32e paging), the 64-bit virtual memory address is divided into five parts. The lowest 12 bits contain the offset within the 4 KiB memory page, and the following 36 bits are evenly divided between the four 9 bit descriptors, each linking to a 64-bit page table entry in a 512-entry page table for each of the ...