Search results
Results from the WOW.Com Content Network
If the discriminant is positive, the number of non-real roots is a multiple of 4. That is, there is a nonnegative integer k ≤ n/4 such that there are 2k pairs of complex conjugate roots and n − 4k real roots. If the discriminant is negative, the number of non-real roots is not a multiple of 4.
An integer that occurs as the discriminant of a quadratic number field is called a fundamental discriminant. [3] Cyclotomic fields: let n > 2 be an integer, let ζ n be a primitive nth root of unity, and let K n = Q(ζ n) be the nth cyclotomic field. The discriminant of K n is given by [2] [4]
All complex cubic fields with discriminant greater than −500 have class number one, except the fields with discriminants −283, −331 and −491 which have class number 2. The real root of the polynomial for −23 is the reciprocal of the plastic ratio (negated), while that for −31 is the reciprocal of the supergolden ratio .
For this converse the field discriminant is needed. This is the Dedekind discriminant theorem. In the example above, the discriminant of the number field () with x 3 − x − 1 = 0 is −23, and as we have seen the 23-adic place ramifies. The Dedekind discriminant tells us it is the only ultrametric place that does.
The following table shows some orders of small discriminant of quadratic fields. The maximal order of an algebraic number field is its ring of integers, and the discriminant of the maximal order is the discriminant of the field. The discriminant of a non-maximal order is the product of the discriminant of the corresponding maximal order by the ...
[8] Since the sign of the discriminant of a number field K is (−1) r 2, where r 2 is the number of conjugate pairs of complex embeddings of K into C, the discriminant of a cubic field will be positive precisely when the field is totally real, and negative if it is a complex cubic field.
An integer D is called a fundamental discriminant if it is the discriminant of a quadratic number field. This is equivalent to D ≠ 1 and either a) D is squarefree and D ≡ 1 (mod 4) or b) D ≡ 0 (mod 4), D /4 is squarefree, and D /4 ≡ 2 or 3 (mod 4).
The number of elements in the class group is called the class number of K. The class number of Q(√-5) is 2. This means that there are only two ideal classes, the class of principal fractional ideals, and the class of a non-principal fractional ideal such as (2, 1 + √-5). The ideal class group has another description in terms of divisors ...