Search results
Results from the WOW.Com Content Network
Lee, John M. (2012). Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Vol. 218 (Second ed.). New York London: Springer-Verlag. ISBN 978-1-4419-9981-8. OCLC 808682771. Introduction to Smooth Manifolds, Springer-Verlag, Graduate Texts in Mathematics, 2002, 2nd edition 2012 [6]
* {{Lee Introduction to Smooth Manifolds|edition=2}} and then add a citation by using the markup Some sentence in the body of the article.{{sfn | Lee | 2012 | pp=1-2}} which results in: Some sentence in the body of the article. [1]
Lee, John M., Introduction to Smooth Manifolds, Springer-Verlag, New York (2003) ISBN 0-387-95495-3.Graduate-level textbook on smooth manifolds. Hwa-Chung, Lee, "The Universal Integral Invariants of Hamiltonian Systems and Application to the Theory of Canonical Transformations", Proceedings of the Royal Society of Edinburgh.
Michele Audin, Torus actions on symplectic manifolds, Birkhauser, 2004 John Lee, Introduction to smooth manifolds , chapter 9, ISBN 978-1-4419-9981-8 Frank Warner, Foundations of differentiable manifolds and Lie groups , chapter 3, ISBN 978-0-387-90894-6
A map is a local diffeomorphism if and only if it is a smooth immersion (smooth local embedding) and an open map.. The inverse function theorem implies that a smooth map : is a local diffeomorphism if and only if the derivative: is a linear isomorphism for all points .
A relatively 'easy' result is to prove that any two embeddings of a 1-manifold into are isotopic (see Knot theory#Higher dimensions). This is proved using general position, which also allows to show that any two embeddings of an n-manifold into + are isotopic. This result is an isotopy version of the weak Whitney embedding theorem.
Depending on the precise definition and the category of manifolds (smooth, PL, or topological), there are various versions of structure sets. Since, by the s-cobordism theorem, certain bordisms between manifolds are isomorphic (in the respective category) to cylinders, the concept of structure set allows a classification even up to diffeomorphism.
M, g) denotes a pseudo-Riemannian manifold. TM is the tangent bundle of M. g is the pseudo-Riemannian metric of M. X, Y, Z are smooth vector fields on M, i. e. smooth sections of TM. [X, Y] is the Lie bracket of X and Y. It is again a smooth vector field. The metric g can take up to two vectors or vector fields X, Y as arguments.