Search results
Results from the WOW.Com Content Network
Blue cone monochromacy (BCM) is an inherited eye disease that causes severe color blindness, poor visual acuity, nystagmus, hemeralopia, and photophobia due to the absence of functional red (L) and green (M) cone photoreceptor cells in the retina. BCM is a recessive X-linked disease and almost exclusively affects XY karyotypes.
There are about six to seven million cones in a human eye (vs ~92 million rods), with the highest concentration being towards the macula. [1] Cones are less sensitive to light than the rod cells in the retina (which support vision at low light levels), but allow the perception of color.
The retina of the human eye contains photoreceptive cells called cones that allow color vision. A normal trichromat possesses three different types of cones to distinguish different colors within the visible spectrum. The three types of cones are designated L, M, and S cones, each containing an opsin sensitive to a different portion of the ...
Red cone monochromacy (RCM), also known as L-cone monochromacy, is a condition where the blue and green cones are absent in the fovea. Like GCM, the prevalence of RCM is also estimated at less than 1 in 1 million. Cone Monochromats with normal rod function can sometimes exhibit mild color vision due to conditional dichromacy.
The below table shows the cone complements for different types of human color vision, including those considered color blindness, normal color vision and 'superior' color vision. The cone complement contains the types of cones (or their opsins) expressed by an individual.
The four pigments in a bird's cone cells (in this example, estrildid finches) extend the range of color vision into the ultraviolet. [1]Tetrachromacy (from Greek tetra, meaning "four" and chroma, meaning "color") is the condition of possessing four independent channels for conveying color information, or possessing four types of cone cell in the eye.
AOL Mail welcomes Verizon customers to our safe and delightful email experience!
Cone dystrophy; Fundus of a 45 year-old patient with cone rod dystrophy segregating with a loss-of-function mutation (E1087X) in ABCA4. Note the presence of various-shaped pigment deposits in the posterior pole with atrophy of the retina, while the retina appears less damaged in periphery (upper part of the photograph). Specialty: Ophthalmology