enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Concave function - Wikipedia

    en.wikipedia.org/wiki/Concave_function

    The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield. Near a strict local maximum in the interior of the domain of a function, the function must be concave; as a partial converse, if the derivative of a strictly concave ...

  3. Inflection point - Wikipedia

    en.wikipedia.org/wiki/Inflection_point

    For the graph of a function f of differentiability class C 2 (its first derivative f', and its second derivative f'', exist and are continuous), the condition f'' = 0 can also be used to find an inflection point since a point of f'' = 0 must be passed to change f'' from a positive value (concave upward) to a negative value (concave downward) or ...

  4. Curve orientation - Wikipedia

    en.wikipedia.org/wiki/Curve_orientation

    Selecting reference points. In two dimensions, given an ordered set of three or more connected vertices (points) (such as in connect-the-dots) which forms a simple polygon, the orientation of the resulting polygon is directly related to the sign of the angle at any vertex of the convex hull of the polygon, for example, of the angle ABC in the picture.

  5. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    On the graph of a function, the second derivative corresponds to the curvature or concavity of the graph. The graph of a function with a positive second derivative is upwardly concave, while the graph of a function with a negative second derivative curves in the opposite way.

  6. Hypograph (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Hypograph_(mathematics)

    Hypograph of a function. In mathematics, the hypograph or subgraph of a function: is the set of points lying on or below its graph.A related definition is that of such a function's epigraph, which is the set of points on or above the function's graph.

  7. Saddle point - Wikipedia

    en.wikipedia.org/wiki/Saddle_point

    A saddle point (in red) on the graph of z = x 2 − y 2 (hyperbolic paraboloid). In mathematics, a saddle point or minimax point [1] is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. [2]

  8. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    For every concave kite there exist two circles tangent to two of the sides and the extensions of the other two: one is interior to the kite and touches the two sides opposite from the concave angle, while the other circle is exterior to the kite and touches the kite on the two edges incident to the concave angle. [27]

  9. Quasiconvex function - Wikipedia

    en.wikipedia.org/wiki/Quasiconvex_function

    The probability density function of the normal distribution is quasiconcave but not concave. The bivariate normal joint density is quasiconcave. In mathematics , a quasiconvex function is a real -valued function defined on an interval or on a convex subset of a real vector space such that the inverse image of any set of the form ( − ∞ , a ...