Search results
Results from the WOW.Com Content Network
DNA polymerase's ability to slide along the DNA template allows increased processivity. There is a dramatic increase in processivity at the replication fork. This increase is facilitated by the DNA polymerase's association with proteins known as the sliding DNA clamp. The clamps are multiple protein subunits associated in the shape of a ring.
To begin transcribing a gene, the RNA polymerase binds to a sequence of DNA called a promoter and separates the DNA strands. It then copies the gene sequence into a messenger RNA transcript until it reaches a region of DNA called the terminator , where it halts and detaches from the DNA.
Structure of Taq DNA polymerase. In biochemistry, a polymerase is an enzyme (EC 2.7.7.6/7/19/48/49) that synthesizes long chains of polymers or nucleic acids. DNA polymerase and RNA polymerase are used to assemble DNA and RNA molecules, respectively, by copying a DNA template strand using base-pairing interactions or RNA by half ladder replication.
DNA polymerase III will then synthesize a continuous or discontinuous strand of DNA, depending if this is occurring on the leading or lagging strand (Okazaki fragment) of the DNA. DNA polymerase III has a high processivity and therefore, synthesizes DNA very quickly. This high processivity is due in part to the β-clamps that "hold" onto the ...
Thermus aquaticus is a species of bacteria that can tolerate high temperatures, one of several thermophilic bacteria that belong to the Deinococcota phylum. It is the source of the heat-resistant enzyme Taq DNA polymerase, one of the most important enzymes in molecular biology because of its use in the polymerase chain reaction (PCR) DNA amplification technique.
Polymerase ε synthesizes DNA on the "leading" DNA strand continuously as it is pointing in the same direction as DNA unwinding by the replisome. In contrast, polymerase δ synthesizes DNA on the "lagging" strand, which is the opposite DNA template strand, in a fragmented or discontinuous manner.
The primosome attaches 1-10 RNA nucleotides to the single stranded DNA creating a DNA-RNA hybrid. This sequence of RNA is used as a primer to initiate DNA polymerase III. The RNA bases are ultimately replaced with DNA bases by RNase H nuclease (eukaryotes) or DNA polymerase I nuclease (prokaryotes). DNA Ligase then acts to join the two ends ...
However, these mutagenic effects are inhibited when the phage's DNA synthesis is catalyzed by the tsCB120 antimutator polymerase, or another antimutator polymerase, tsCB87. [9] These findings indicate that the level of induction of mutations by DNA damage can be strongly influenced by the gene 43 DNA polymerase proofreading function.