Search results
Results from the WOW.Com Content Network
Sentences are then built up out of atomic sentences by applying connectives and quantifiers. A set of sentences is called a theory; thus, individual sentences may be called theorems. To properly evaluate the truth (or falsehood) of a sentence, one must make reference to an interpretation of the theory.
The corresponding conditional of a valid argument is a logical truth and the negation of its corresponding conditional is a contradiction. The conclusion is a necessary consequence of its premises. An argument that is not valid is said to be "invalid". An example of a valid (and sound) argument is given by the following well-known syllogism:
The definition of a formal proof is intended to capture the concept of proofs as written in the practice of mathematics. The soundness of this definition amounts to the belief that a published proof can, in principle, be converted into a formal proof. However, outside the field of automated proof assistants, this is rarely done in practice.
In the latter case, a (declarative) sentence is just one way of expressing an underlying statement. A statement is what a sentence means, it is the notion or idea that a sentence expresses, i.e., what it represents. For example, it could be said that "2 + 2 = 4" and "two plus two equals four" are two different sentences expressing the same ...
In logic and deductive reasoning, an argument is sound if it is both valid in form and has no false premises. [1] Soundness has a related meaning in mathematical logic, wherein a formal system of logic is sound if and only if every well-formed formula that can be proven in the system is logically valid with respect to the logical semantics of the system.
An axiomatic system is said to be consistent if it lacks contradiction.That is, it is impossible to derive both a statement and its negation from the system's axioms. Consistency is a key requirement for most axiomatic systems, as the presence of contradiction would allow any statement to be proven (principle of explo
The predicate calculus goes a step further than the propositional calculus to an "analysis of the inner structure of propositions" [4] It breaks a simple sentence down into two parts (i) its subject (the object (singular or plural) of discourse) and (ii) a predicate (a verb or possibly verb-clause that asserts a quality or attribute of the object(s)).
The Gödel sentence is designed to refer, indirectly, to itself. The sentence states that, when a particular sequence of steps is used to construct another sentence, that constructed sentence will not be provable in F. However, the sequence of steps is such that the constructed sentence turns out to be G F itself.