enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. White noise - Wikipedia

    en.wikipedia.org/wiki/White_noise

    An example of a random vector that is Gaussian white noise in the weak but not in the strong sense is = [,] where is a normal random variable with zero mean, and is equal to + or to , with equal probability. These two variables are uncorrelated and individually normally distributed, but they are not jointly normally distributed and are not ...

  3. Gaussian noise - Wikipedia

    en.wikipedia.org/wiki/Gaussian_noise

    In signal processing theory, Gaussian noise, named after Carl Friedrich Gauss, is a kind of signal noise that has a probability density function (pdf) equal to that of the normal distribution (which is also known as the Gaussian distribution). [1] [2] In other words, the values that the noise can take are Gaussian-distributed.

  4. Noise (signal processing) - Wikipedia

    en.wikipedia.org/wiki/Noise_(signal_processing)

    White noise. Additive white Gaussian noise; Black noise; Gaussian noise; Pink noise or flicker noise, with 1/f power spectrum; Brownian noise, with 1/f 2 power spectrum; Contaminated Gaussian noise, whose PDF is a linear mixture of Gaussian PDFs; Power-law noise; Cauchy noise; Multiplicative noise, multiplies or modulates the intended signal

  5. Colors of noise - Wikipedia

    en.wikipedia.org/wiki/Colors_of_noise

    Colored noise can be computer-generated by first generating a white noise signal, Fourier-transforming it, then multiplying the amplitudes of the different frequency components with a frequency-dependent function. [26] Matlab programs are available to generate power-law colored noise in one or any number of dimensions.

  6. White noise analysis - Wikipedia

    en.wikipedia.org/wiki/White_noise_analysis

    In probability theory, a branch of mathematics, white noise analysis, otherwise known as Hida calculus, is a framework for infinite-dimensional and stochastic calculus, based on the Gaussian white noise probability space, to be compared with Malliavin calculus based on the Wiener process. [1]

  7. Whitening transformation - Wikipedia

    en.wikipedia.org/wiki/Whitening_transformation

    A whitening transformation or sphering transformation is a linear transformation that transforms a vector of random variables with a known covariance matrix into a set of new variables whose covariance is the identity matrix, meaning that they are uncorrelated and each have variance 1. [1]

  8. Linear–quadratic–Gaussian control - Wikipedia

    en.wikipedia.org/wiki/Linear–quadratic...

    It concerns linear systems driven by additive white Gaussian noise. The problem is to determine an output feedback law that is optimal in the sense of minimizing the expected value of a quadratic cost criterion. Output measurements are assumed to be corrupted by Gaussian noise and the initial state, likewise, is assumed to be a Gaussian random ...

  9. Additive white Gaussian noise - Wikipedia

    en.wikipedia.org/wiki/Additive_white_Gaussian_noise

    Additive white Gaussian noise (AWGN) is a basic noise model used in information theory to mimic the effect of many random processes that occur in nature. The modifiers denote specific characteristics: Additive because it is added to any noise that might be intrinsic to the information system.