Search results
Results from the WOW.Com Content Network
Anion gap can be classified as either high, normal or, in rare cases, low. Laboratory errors need to be ruled out whenever anion gap calculations lead to results that do not fit the clinical picture. Methods used to determine the concentrations of some of the ions used to calculate the anion gap may be susceptible to very specific errors.
The anion gap (AG) without potassium is calculated first and if a metabolic acidosis is present, results in either a high anion gap metabolic acidosis (HAGMA) or a normal anion gap acidosis (NAGMA). A low anion gap is usually an oddity of measurement, rather than a clinical concern.
k H CO 2 is a constant including the solubility of carbon dioxide in blood. k H CO 2 is approximately 0.03 (mmol/L)/mmHg; p CO 2 is the partial pressure of carbon dioxide in the blood; Combining these equations results in the following equation relating the pH of blood to the concentration of bicarbonate and the partial pressure of carbon ...
Recall that the relationship represented in a Davenport diagram is a relationship between three variables: P CO 2, bicarbonate concentration and pH.Thus, Fig. 7 can be thought of as a topographical map—that is, a two-dimensional representation of a three-dimensional surface—where each isopleth indicates a different partial pressure or “altitude.”
High anion gap metabolic acidosis is typically caused by acid produced by the body. More rarely, it may be caused by ingesting methanol or overdosing on aspirin . [ 1 ] [ 2 ] The delta ratio is a formula that can be used to assess elevated anion gap metabolic acidosis and to evaluate whether mixed acid base disorder (metabolic acidosis) is present.
The inorganic carbon species include carbon dioxide, carbonic acid, bicarbonate anion, and carbonate. [5] It is customary to express carbon dioxide and carbonic acid simultaneously as CO 2 *. C T is a key parameter when making measurements related to the pH of natural aqueous systems, [6] and carbon dioxide flux estimates.
The anion exchanger family (TC# 2.A.31, also named bicarbonate transporter family) is a member of the large APC superfamily of secondary carriers. [1] Members of the AE family are generally responsible for the transport of anions across cellular barriers, although their functions may vary.
The cation of the indicator electrolyte should not move faster than the cation whose transport number is to be determined, and it should have same anion as the principle electrolyte. Besides the principal electrolyte (e.g., HCl) is kept light so that it floats on indicator electrolyte.