Search results
Results from the WOW.Com Content Network
The Maxwell equations in the presence of matter then become: = = where the current 3-form J still satisfies the continuity equation dJ = 0. When the fields are expressed as linear combinations (of exterior products) of basis forms θ i, =. the constitutive relation takes the form = where the field coefficient functions and the constitutive ...
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
A tiny Gauss's box whose sides are perpendicular to a conductor's surface is used to find the local surface charge once the electric potential and the electric field are calculated by solving Laplace's equation. The electric field is perpendicular, locally, to the equipotential surface of the conductor, and zero inside; its flux πa 2 ·E, by ...
This means that if the source charge were doubled, the electric field would double, and if you move twice as far away from the source, the field at that point would be only one-quarter its original strength. The electric field can be visualized with a set of lines whose direction at each point is the same as those of the field, a concept ...
For example, an electromagnetic field has both electric field strength and magnetic field strength. As an application, in radio frequency telecommunications, the signal strength excites a receiving antenna and thereby induces a voltage at a specific frequency and polarization in order to provide an input signal to a radio receiver.
The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:
In electromagnetism, the electromagnetic tensor or electromagnetic field tensor (sometimes called the field strength tensor, Faraday tensor or Maxwell bivector) is a mathematical object that describes the electromagnetic field in spacetime.
Poynting vector in a static field, where E is the electric field, H the magnetic field, and S the Poynting vector. The consideration of the Poynting vector in static fields shows the relativistic nature of the Maxwell equations and allows a better understanding of the magnetic component of the Lorentz force, q(v × B).