enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Drag curve - Wikipedia

    en.wikipedia.org/wiki/Drag_curve

    Drag and lift coefficients for the NACA 63 3 618 airfoil. Full curves are lift, dashed drag; red curves have R e = 3·10 6, blue 9·10 6. Coefficients of lift and drag against angle of attack. Curve showing induced drag, parasitic drag and total drag as a function of airspeed. Drag curve for the NACA 63 3 618 airfoil, colour-coded as opposite plot.

  3. Aircraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Aircraft_flight_dynamics

    An aircraft is streamlined from nose to tail to reduce drag making it advantageous to keep the sideslip angle near zero, though an aircraft may be deliberately "sideslipped" to increase drag and descent rate during landing, to keep aircraft heading same as runway heading during cross-wind landings and during flight with asymmetric power.

  4. Thickness-to-chord ratio - Wikipedia

    en.wikipedia.org/wiki/Thickness-to-chord_ratio

    In order to reduce wave drag, wings should have the minimum curvature possible while still generating the required amount of lift. So, the main reason for decreasing the blade section thickness to chord ratio is to delay the compressibility effect related to higher Mach numbers, delaying the onset of a shock wave formation.

  5. Lift-induced drag - Wikipedia

    en.wikipedia.org/wiki/Lift-induced_drag

    Lift-induced drag, induced drag, vortex drag, or sometimes drag due to lift, in aerodynamics, is an aerodynamic drag force that occurs whenever a moving object redirects the airflow coming at it. This drag force occurs in airplanes due to wings or a lifting body redirecting air to cause lift and also in cars with airfoil wings that redirect air ...

  6. Lift-to-drag ratio - Wikipedia

    en.wikipedia.org/wiki/Lift-to-drag_ratio

    It is measured empirically by testing in a wind tunnel or in free flight test. [1] [2] [3] The L/D ratio is affected by both the form drag of the body and by the induced drag associated with creating a lifting force. It depends principally on the lift and drag coefficients, angle of attack to the airflow and the wing aspect ratio.

  7. Meredith effect - Wikipedia

    en.wikipedia.org/wiki/Meredith_Effect

    The North American P-51 Mustang makes significant use of the Meredith effect in its belly radiator design. [1]The Meredith effect is a phenomenon whereby the aerodynamic drag produced by a cooling radiator may be offset by careful design of the cooling duct such that useful thrust is produced by the expansion of the hot air in the duct.

  8. Area rule - Wikipedia

    en.wikipedia.org/wiki/Area_rule

    Cross-sectional area distribution along the complete airframe determines wave drag, largely independent of the actual shape. The blue and light green shapes are roughly equal in area. The Whitcomb area rule , named after NACA engineer Richard Whitcomb and also called the transonic area rule , is a design procedure used to reduce an aircraft 's ...

  9. Coffin corner (aerodynamics) - Wikipedia

    en.wikipedia.org/wiki/Coffin_corner_(aerodynamics)

    As an airplane moves through the air faster, the airflow over parts of the wing will reach speeds that approach Mach 1.0. At such speeds, shock waves form in the air passing over the wings, drastically increasing the drag due to drag divergence , causing Mach buffet, or drastically changing the center of pressure , resulting in a nose-down ...