Search results
Results from the WOW.Com Content Network
Blood resistance varies depending on blood viscosity and its plugged flow (or sheath flow since they are complementary across the vessel section) size as well, and on the size of the vessels. Assuming steady, laminar flow in the vessel, the blood vessels behavior is similar to that of a pipe.
Below are several examples of differing types of local blood flow regulation by specific organ type or organ system. In each case, there is a specific type of intrinsic regulation occurring in order to maintain or alter blood flow to that given organ alone, instead of creating a systemic change that would affect the entire body.
This influences various homeostatic processes of the nervous tissue including volume regulation and the control of blood flow. Although purinergic signaling has been connected to pathological processes in the context of neuron-glia communication, it has been revealed, that this is also very important under physiological conditions.
Once homeostasis is restored, the blood pressure and ATP production regulates. Vasoconstriction also occurs in superficial blood vessels of warm-blooded animals when their ambient environment is cold; this process diverts the flow of heated blood to the center of the animal, preventing the loss of heat. [citation needed]
This part of coronary circulatory regulation is known as auto regulation and it occurs over a plateau, reflecting the constant blood flow at varying CPP & resistance. The slope of a CBF (coronary blood flow) vs. CPP graph gives 1/Resistance. Autoregulation maintains a normal blood flow within the pressure range of 70–110 mm Hg.
Cerebral blood flow (CBF) is the blood supply to the brain in a given period of time. [8] In an adult, CBF is typically 750 millilitres per minute or 15.8 ± 5.7% of the cardiac output . [ 9 ] This equates to an average perfusion of 50 to 54 millilitres of blood per 100 grams of brain tissue per minute.
When blood vessels dilate, the flow of blood is increased due to a decrease in vascular resistance and increase in cardiac output [further explanation needed]. Vascular resistance is the amount of force circulating blood must overcome in order to allow perfusion of body tissues. Narrow vessels create more vascular resistance, while dilated ...
Astrocytes are known to facilitate changes in blood flow [7] [8] and have long been thought to play a role in waste removal in the brain. [9] Astrocytes express water channels called aquaporins. [10] Until 2000, no physiological function had been identified that explained their presence in the mammalian CNS.