Search results
Results from the WOW.Com Content Network
However, the original paper, "A fast algorithm for optimal length-limited Huffman codes", shows how this can be improved to O(nL)-time and O(n)-space. The idea is to run the algorithm a first time, only keeping enough data to be able to determine two equivalent subproblems that sum to half the size of the original problem.
In computer science and information theory, a Huffman code is a particular type of optimal prefix code that is commonly used for lossless data compression.The process of finding or using such a code is Huffman coding, an algorithm developed by David A. Huffman while he was a Sc.D. student at MIT, and published in the 1952 paper "A Method for the Construction of Minimum-Redundancy Codes".
The normal Huffman coding algorithm assigns a variable length code to every symbol in the alphabet. More frequently used symbols will be assigned a shorter code. For example, suppose we have the following non-canonical codebook: A = 11 B = 0 C = 101 D = 100 Here the letter A has been assigned 2 bits, B has 1 bit, and C and D both have 3 bits.
Modified Huffman coding is used in fax machines to encode black-on-white images . It combines the variable-length codes of Huffman coding with the coding of repetitive data in run-length encoding . The basic Huffman coding provides a way to compress files with much repeating data, like a file containing text, where the alphabet letters are the ...
Group 4 compression is based on the Group 3 two-dimensional compression scheme (G3-2D), also known as Modified READ, which is in turn based on the Group 3 one-dimensional compression scheme (G3), also known as Modified Huffman coding. Group 4 compression is available in many proprietary image file formats as well as standardized formats such as ...
Adaptive Huffman coding (also called Dynamic Huffman coding) is an adaptive coding technique based on Huffman coding. It permits building the code as the symbols are being transmitted, having no initial knowledge of source distribution, that allows one-pass encoding and adaptation to changing conditions in data.
As an example consider the sequence of tokens AABBA which would assemble the dictionary; 0 {0,_} 1 {0,A} 2 {1,B} 3 {0,B} and the output sequence of the compressed data would be 0A1B0B. Note that the last A is not represented yet as the algorithm cannot know what comes next. In practice an EOF marker is added to the input – AABBA$ for
Instructions to generate the necessary Huffman tree immediately follow the block header. The static Huffman option is used for short messages, where the fixed saving gained by omitting the tree outweighs the percentage compression loss due to using a non-optimal (thus, not technically Huffman) code. Compression is achieved through two steps: