Search results
Results from the WOW.Com Content Network
In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic ...
Linear discriminant analysis (LDA), normal discriminant analysis (NDA), canonical variates analysis (CVA), or discriminant function analysis is a generalization of Fisher's linear discriminant, a method used in statistics and other fields, to find a linear combination of features that characterizes or separates two or more classes of objects or ...
For a differential equation parameterized on time, the variable's evolution is stable if and only if the real part of each root is negative. For difference equations, there is stability if and only if the modulus of each root is less than 1. For both types of equation, persistent fluctuations occur if there is at least one pair of complex roots.
The definition of the discriminant of a general algebraic number field, K, was given by Dedekind in 1871. [16] At this point, he already knew the relationship between the discriminant and ramification. [17] Hermite's theorem predates the general definition of the discriminant with Charles Hermite publishing a proof of it in 1857. [18]
The vast majority of classical mechanics, relativity, and quantum mechanics is based on applied analysis, and differential equations in particular. Examples of important differential equations include Newton's second law, the Schrödinger equation, and the Einstein field equations. Functional analysis is also a major factor in quantum mechanics.
In this case, the definition amounts to t being a double root of F(t, x, y), so the equation of the envelope can be found by setting the discriminant of F to 0 (because the definition demands F=0 at some t and first derivative =0 i.e. its value 0 and it is min/max at that t).
In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...
The characteristic equation, also known as the determinantal equation, [1] [2] [3] is the equation obtained by equating the characteristic polynomial to zero. In spectral graph theory , the characteristic polynomial of a graph is the characteristic polynomial of its adjacency matrix .