Search results
Results from the WOW.Com Content Network
The de Broglie wavelength is the wavelength, λ, associated with a particle with momentum p through the Planck constant, h: =. Wave-like behavior of matter has been experimentally demonstrated, first for electrons in 1927 and for other elementary particles , neutral atoms and molecules in the years since.
The de Broglie relation, [10] [11] [12] also known as de Broglie's momentum–wavelength relation, [4] generalizes the Planck relation to matter waves. Louis de Broglie argued that if particles had a wave nature, the relation E = hν would also apply to them, and postulated that particles would have a wavelength equal to λ = h / p .
Diagram illustrating the relationship between the wavenumber and the other properties of harmonic waves. In the physical sciences, the wavenumber (or wave number), also known as repetency, [1] is the spatial frequency of a wave, measured in cycles per unit distance (ordinary wavenumber) or radians per unit distance (angular wavenumber).
The Planck constant, or Planck's constant, denoted by , [1] is a fundamental physical constant [1] of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a matter wave equals the Planck constant divided by the associated particle momentum.
This equation is known as the Planck relation. Additionally, using equation f = c/λ, = where E is the photon's energy; λ is the photon's wavelength; c is the speed of light in vacuum; h is the Planck constant; The photon energy at 1 Hz is equal to 6.626 070 15 × 10 −34 J, which is equal to 4.135 667 697 × 10 −15 eV.
Wavelength depends on the medium (for example, vacuum, air, or water) that a wave travels through. Examples of waves are sound waves, light, water waves and periodic electrical signals in a conductor. A sound wave is a variation in air pressure, while in light and other electromagnetic radiation the strength of the electric and the magnetic ...
In physics, the thermal de Broglie wavelength (, sometimes also denoted by ) is a measure of the uncertainty in location of a particle of thermodynamic average momentum in an ideal gas. [1] It is roughly the average de Broglie wavelength of particles in an ideal gas at the specified temperature.
[citation needed] This renders moot the question of the original particle's location. This argument also shows that the reduced Compton wavelength is the cutoff below which quantum field theory – which can describe particle creation and annihilation – becomes important. The above argument can be made a bit more precise as follows.