Search results
Results from the WOW.Com Content Network
The higher the percentage, the stronger the electrolyte. Thus, even if a substance is not very soluble, but does dissociate completely into ions, the substance is defined as a strong electrolyte. Similar logic applies to a weak electrolyte. Strong acids and bases are good examples, such as HCl and H 2 SO 4. These will all exist as ions in an ...
[1] [2] [3] This includes most soluble salts, acids, and bases, dissolved in a polar solvent like water. Upon dissolving, the substance separates into cations and anions, which disperse uniformly throughout the solvent. [4] Solid-state electrolytes also exist. In medicine and sometimes in chemistry, the term electrolyte refers to the substance ...
In water, OH − is the strongest base. Thus, even though sodium amide (NaNH 2) is an exceptional base (pK a of NH 3 ~ 33), in water it is only as good as sodium hydroxide. On the other hand, NaNH 2 is a far more basic reagent in ammonia than is NaOH. The pH range allowed by a particular solvent is called the acid-base discrimination window. [1]
Acids and bases are aqueous solutions, as part of their Arrhenius definitions. [1] An example of an Arrhenius acid is hydrogen chloride (HCl) because of its dissociation of the hydrogen ion when dissolved in water. Sodium hydroxide (NaOH) is an Arrhenius base because it dissociates the hydroxide ion when it is dissolved in water. [3]
These ions are good conductors of electric current in the solution. Originally, a "strong electrolyte" was defined as a chemical compound that, when in aqueous solution, is a good conductor of electricity. With a greater understanding of the properties of ions in solution, its definition was replaced by the present one.
Acid strength is the tendency of an acid, symbolised by the chemical formula, to dissociate into a proton, +, and an anion, .The dissociation or ionization of a strong acid in solution is effectively complete, except in its most concentrated solutions.
Alcohols do not normally behave as acids in water, but the presence of a double bond adjacent to the OH group can substantially decrease the pK a by the mechanism of keto–enol tautomerism. Ascorbic acid is an example of this effect. The diketone 2,4-pentanedione (acetylacetone) is also a weak acid because of the keto–enol equilibrium.
However, for weak acids, a quadratic equation must be solved, and for weak bases, a cubic equation is required. In general, a set of non-linear simultaneous equations must be solved. Water itself is a weak acid and a weak base, so its dissociation must be taken into account at high pH and low solute concentration (see amphoterism).