enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    As above, for e = 0, the graph is a circle, for 0 < e < 1 the graph is an ellipse, for e = 1 a parabola, and for e > 1 a hyperbola. The polar form of the equation of a conic is often used in dynamics ; for instance, determining the orbits of objects revolving about the Sun. [ 20 ]

  3. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. (The other conic sections are the parabola and the ellipse. A circle is a special case of an ...

  4. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    If λ 1 and λ 2 have the same algebraic sign, then Q is a real ellipse, imaginary ellipse or real point if K has the same sign, has the opposite sign or is zero, respectively. If λ 1 and λ 2 have opposite algebraic signs, then Q is a hyperbola or two intersecting lines depending on whether K is nonzero or zero, respectively.

  5. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    (The parabolas are orthogonal for an analogous reason to confocal ellipses and hyperbolas: parabolas have a reflective property.) Analogous to confocal ellipses and hyperbolas, the plane can be covered by an orthogonal net of parabolas, which can be used for a parabolic coordinate system .

  6. Conjugate diameters - Wikipedia

    en.wikipedia.org/wiki/Conjugate_diameters

    The ellipse, parabola, and hyperbola are viewed as conics in projective geometry, and each conic determines a relation of pole and polar between points and lines. Using these concepts, "two diameters are conjugate when each is the polar of the figurative point of the other." [5] Only one of the conjugate diameters of a hyperbola cuts the curve.

  7. Translation of axes - Wikipedia

    en.wikipedia.org/wiki/Translation_of_axes

    For example, to study the equations of ellipses and hyperbolas, the foci are usually located on one of the axes and are situated symmetrically with respect to the origin. If the curve (hyperbola, parabola , ellipse, etc.) is not situated conveniently with respect to the axes, the coordinate system should be changed to place the curve at a ...

  8. Focal conics - Wikipedia

    en.wikipedia.org/wiki/Focal_conics

    F: focus of the red parabola and vertex of the blue parabola. In geometry, focal conics are a pair of curves consisting of [1] [2] either an ellipse and a hyperbola, where the hyperbola is contained in a plane, which is orthogonal to the plane containing the ellipse. The vertices of the hyperbola are the foci of the ellipse and its foci are the ...

  9. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...