Search results
Results from the WOW.Com Content Network
Ethanol fermentation, also called alcoholic fermentation, is a biological process which converts sugars such as glucose, fructose, and sucrose into cellular energy, producing ethanol and carbon dioxide as by-products.
Industrial fermentation is the intentional use of fermentation in manufacturing processes. In addition to the mass production of fermented foods and drinks, industrial fermentation has widespread applications in chemical industry. Commodity chemicals, such as acetic acid, citric acid, and ethanol are made by fermentation. [1]
First, glucose metabolism is faster through ethanol fermentation because it involves fewer enzymes and limits all reactions to the cytoplasm. Second, ethanol has bactericidal activity by causing damage to the cell membrane and protein denaturing , allowing yeast fungus to outcompete environmental bacteria for resources. [ 6 ]
The high concentration of lactic acid (the final product of fermentation) drives the equilibrium backwards (Le Chatelier's principle), decreasing the rate at which fermentation can occur and slowing down growth. Ethanol, into which lactic acid can be easily converted, is volatile and will readily escape, allowing the reaction to proceed easily.
The process may be likened to how yeast ferments sugars to produce ethanol for wine, beer, or fuel, but the organisms that carry out the ABE fermentation are strictly anaerobic (obligate anaerobes). The ABE fermentation produces solvents in a ratio of 3 parts acetone, 6 parts butanol to 1 part ethanol.
Corn ethanol is ethanol produced from corn biomass and is the main source of ethanol fuel in the United States, mandated to be blended with gasoline in the Renewable Fuel Standard. Corn ethanol is produced by ethanol fermentation and distillation .
Grapes being trodden to extract the juice and made into wine in storage jars. Tomb of Nakht, 18th dynasty, Thebes, Ancient Egypt. Sourdough starter. In food processing, fermentation is the conversion of carbohydrates to alcohol or organic acids using microorganisms—yeasts or bacteria—without an oxidizing agent being used in the reaction.
The Crabtree effect, named after the English biochemist Herbert Grace Crabtree, [1] describes the phenomenon whereby the yeast, Saccharomyces cerevisiae, produces ethanol (alcohol) in aerobic conditions at high external glucose concentrations rather than producing biomass via the tricarboxylic acid (TCA) cycle, the usual process occurring aerobically in most yeasts e.g. Kluyveromyces spp. [2 ...