enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiclass classification - Wikipedia

    en.wikipedia.org/wiki/Multiclass_classification

    Decision tree learning is a powerful classification technique. The tree tries to infer a split of the training data based on the values of the available features to produce a good generalization. The algorithm can naturally handle binary or multiclass classification problems. The leaf nodes can refer to any of the K classes concerned.

  3. Probabilistic classification - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_classification

    Some classification models, such as naive Bayes, logistic regression and multilayer perceptrons (when trained under an appropriate loss function) are naturally probabilistic. Other models such as support vector machines are not, but methods exist to turn them into probabilistic classifiers.

  4. Statistical classification - Wikipedia

    en.wikipedia.org/wiki/Statistical_classification

    Early work on statistical classification was undertaken by Fisher, [1] [2] in the context of two-group problems, leading to Fisher's linear discriminant function as the rule for assigning a group to a new observation. [3] This early work assumed that data-values within each of the two groups had a multivariate normal distribution.

  5. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    The term classification and regression tree (CART) analysis is an umbrella term used to refer to either of the above procedures, first introduced by Breiman et al. in 1984. [7] Trees used for regression and trees used for classification have some similarities – but also some differences, such as the procedure used to determine where to split.

  6. Multi-label classification - Wikipedia

    en.wikipedia.org/wiki/Multi-label_classification

    A classifier chain is an alternative method for transforming a multi-label classification problem into several binary classification problems. It differs from binary relevance in that labels are predicted sequentially, and the output of all previous classifiers (i.e. positive or negative for a particular label) are input as features to ...

  7. Accuracy paradox - Wikipedia

    en.wikipedia.org/wiki/Accuracy_paradox

    Even though the accuracy is ⁠ 10 + 999000 / 1000000 ⁠ ≈ 99.9%, 990 out of the 1000 positive predictions are incorrect. The precision of ⁠ 10 / 10 + 990 ⁠ = 1% reveals its poor performance. As the classes are so unbalanced, a better metric is the F1 score = ⁠ 2 × 0.01 × 1 / 0.01 + 1 ⁠ ≈ 2% (the recall being ⁠ 10 + 0 / 10 ...

  8. Bias–variance tradeoff - Wikipedia

    en.wikipedia.org/wiki/Bias–variance_tradeoff

    In statistics and machine learning, the bias–variance tradeoff describes the relationship between a model's complexity, the accuracy of its predictions, and how well it can make predictions on previously unseen data that were not used to train the model. In general, as we increase the number of tunable parameters in a model, it becomes more ...

  9. Evaluation of binary classifiers - Wikipedia

    en.wikipedia.org/wiki/Evaluation_of_binary...

    The positive and negative prediction values would be 99%, so there can be high confidence in the result. However, if the prevalence is only 5%, so of the 2000 people only 100 are really sick, then the prediction values change significantly. The likely result is 99 true positives, 1 false negative, 1881 true negatives and 19 false positives.