Search results
Results from the WOW.Com Content Network
Neurohydrodynamics investigates the role of intracranial fluid hydrodynamics (e.g. cerebrospinal fluid, cerebral blood flow, and interstitial fluid) in the pathophysiology of neurological disorders such as hydrocephalus, Chiari malformation, syringomyelia, pseudotumor cerebri, cerebral vasospasm, Alzheimer's disease, multiple sclerosis and ...
Intracranial pressure (ICP) is the pressure exerted by fluids such as cerebrospinal fluid (CSF) inside the skull and on the brain tissue. ICP is measured in millimeters of mercury and at rest, is normally 7–15 mmHg for a supine adult. This equals to 9–20 cmH 2 O, which is a common scale used in lumbar punctures. [1]
Cerebrospinal fluid (CSF) is a clear, colorless body fluid found within the tissue that surrounds the brain and spinal cord of all vertebrates. CSF is produced by specialized ependymal cells in the choroid plexus of the ventricles of the brain, and absorbed in the arachnoid granulations .
The three main components in determining ICP is the blood circulation in the brain, cerebrospinal fluid (CSF), and the brain tissue itself. This relationship is dictated by the Monro-Kellie doctrine, which states that as the brain swells, intracranial pressure (ICP) rises and cerebral perfusion decreases.
In the magnitude image, cerebrospinal fluid (CSF) that is flowing is a brighter signal and stationary tissues are suppressed and visualized as black background. The phase image is phase-shift encoded, where white high signals represent forward flowing CSF and black low signals represent backwards flow.
Following is a list of reference ranges for cerebrospinal fluid: Ions and metals. Reference ranges for ions and metals in CSF [1] Substance Lower limit Upper limit
The cranium encloses a fixed-volume space that holds three components: blood, cerebrospinal fluid (CSF), and very soft tissue (the brain). While both the blood and CSF have poor compression capacity, the brain is easily compressible. Every increase of ICP can cause a change in tissue perfusion and an increase in stroke events.
The CSF/serum glucose ratio, also known as CSF/blood glucose ratio, is a measurement used to compare CSF glucose and blood sugar.. Because many bacteria metabolize glucose, and because the blood–brain barrier minimizes transversal, the ratio can be useful in determining whether there is a bacterial infection in the CSF.