Search results
Results from the WOW.Com Content Network
In computer science, locality of reference, also known as the principle of locality, [1] is the tendency of a processor to access the same set of memory locations repetitively over a short period of time. [2] There are two basic types of reference locality – temporal and spatial locality. Temporal locality refers to the reuse of specific data ...
In computing, a memory access pattern or IO access pattern is the pattern with which a system or program reads and writes memory on secondary storage.These patterns differ in the level of locality of reference and drastically affect cache performance, [1] and also have implications for the approach to parallelism [2] [3] and distribution of workload in shared memory systems. [4]
Most modern CPUs are so fast that for most program workloads, the bottleneck is the locality of reference of memory accesses and the efficiency of the caching and memory transfer between different levels of the hierarchy [citation needed]. As a result, the CPU spends much of its time idling, waiting for memory I/O to complete.
In computer science, partitioned global address space (PGAS) is a parallel programming model paradigm. PGAS is typified by communication operations involving a global memory address space abstraction that is logically partitioned, where a portion is local to each process, thread, or processing element.
Taking this one stage further, the clue word can hint at the word or words to be abbreviated rather than giving the word itself. For example: "About" for C or CA (for "circa"), or RE. "Say" for EG, used to mean "for example". More obscure clue words of this variety include: "Model" for T, referring to the Model T.
A reference is an abstract data type and may be implemented in many ways. Typically, a reference refers to data stored in memory on a given system, and its internal value is the memory address of the data, i.e. a reference is implemented as a pointer. For this reason a reference is often said to "point to" the data.
Tree-based designs avoid this by placing the page table entries for adjacent pages in adjacent locations, but an inverted page table destroys spatial locality of reference by scattering entries all over. An operating system may minimize the size of the hash table to reduce this problem, with the trade-off being an increased miss rate.
Rarely, but especially in algorithms, coherence can instead refer to the locality of reference. Multiple copies of the same data can exist in different cache simultaneously and if processors are allowed to update their own copies freely, an inconsistent view of memory can result.